分析 (1)将a=-2代入f(x),求出函数的定义域,得到f(-x)=-f(x),从而判断出函数的奇偶性;
(2)根据函数单调性的定义证明函数的单调性即可.
解答 解(1)可求得a=-2,
f(x)=$\frac{-{2x}^{2}+1}{x}$=-2x+$\frac{1}{x}$…(3分)
因为f(x)的定义域为(-∞,0)∪(0,+∞)
且f(-x)=2x-$\frac{1}{x}$=-f(x),
所以f(x)是奇函数.…(7分)
(2)f(x)在(0,+∞)上的单调递减,
证明:设任意0<x1<x2,
则f(x1)-f(x2)=-2x1+$\frac{1}{{x}_{1}}$+2x2-$\frac{1}{{x}_{2}}$=(x2-x1)(2+$\frac{1}{{{x}_{1}x}_{2}}$)…(10分)
因为0<x1<x2 所以x2-x1>0且2+$\frac{1}{{{x}_{1}x}_{2}}$>0,
所以 f(x1)>f(x2)
所以 f(x)在(0,+∞)上的单调递减…(14分)
点评 本题考查了函数的单调性、奇偶性的定义,是一道基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 0 | D. | $-\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com