精英家教网 > 高中数学 > 题目详情
已知函数.
(1)求函数的定义域;
(2)判断的奇偶性并予以证明.
(1);(2)奇函数,证明详见解析.

试题分析:(1)根据对数函数的真数大于0,求解不等式即可得到函数的定义域;(2)从奇偶函数的定义上进行判断、证明该函数的奇偶性,即先由(1)说明函数的定义域关于原点对称;然后求出,若,则该函数为偶函数,若,则该函数的奇函数.
试题解析:(1)由题得        3分
所以函数的定义域为          5分
(2)函数为奇函数        6分
证明:由(1)知函数的定义域关于原点对称   7分


所以函数为奇函数          10分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定义域为R的函数f(x)=是奇函数.
(1)求a,b的值.
(2)用定义证明f(x)在(-∞,+∞)上为减函数.
(3)若对于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是定义在上的奇函数,当时,.
(1)求
(2)求的解析式;
(3)若,求区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,判断函数的奇偶性,并加以证明;
(2)若函数上是增函数,求实数的取值范围;
(3)若存在实数使得关于的方程有三个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义在(0,+∞) 上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意的0<a<b,则必有(  ).
A.af(b)≤bf(a)B.bf(a)≤af(b)
C.af(a)≤f(b)D.bf(b)≤f(a)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数yf(x-1)的图象关于直线x=1对称,且当x∈(-∞,0),f(x)+xf′(x)<0成立,若a=(20.2f(20.2),b=(ln 2)·f(ln 2),c·f,则abc的大小关系是(  ).
A.a>b>cB.b>a>c
C.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,对于满足的任意,下列结论:
(1);(2)
(3);   (4)
其中正确结论的序号是(    )
A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,既是偶函数又在区间(0,+)上单调递减的是(     )
A.y=-ln|x|B.y=x3C.y=2|x|D.y=cosx

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数在区间上为减函数的是(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案