【题目】已知圆C经过P(4,-2),Q(-1,3)两点,且圆心在x轴上。
(1)求直线PQ的方程;
(2)圆C的方程;
(3)若直线l∥PQ,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程。
【答案】(1);(2);(3)或
【解析】试题分析:(1)根据直线方程的点斜式求解所求的直线方程(2)根据待定系数法设出圆心坐标和半径,寻找未知数之间的关系是求圆的方程的关键,注意弦长问题的处理方法;
(3)利用直线的平行关系设出直线的方程,利用设而不求的思想得到关于所求直线方程中未知数的方程,通过方程思想确定出所求的方程,注意对所求的结果进行验证和取舍.
试题解析:
(1)直线PQ的方程为x+y-2=0。
(2)C在PQ的中垂线 即 设 由题意有或 (舍去),或(舍去)∴圆C的方程为(x-1)2+y2=13.
(3)设直线l的方程为y=-x+m,A(x1,m-x1),B(x2,m-x2),
由题意可知OA⊥OB,即·=0,
所以x1x2+(m-x1)(m-x2)=0,
化简得2x1x2-m(x1+x2)+m2=0。(*)
由得2x2-2(m+1)x+m2-12=0,
所以x1+x2=m+1,x1x2=。
代入(*)式,得m2-12-m·(m+1)+m2=0,
所以m=4或m=-3,经检验都满足判别式>0,
所以直线l的方程为x+y-4=0或x+y+3=0。
科目:高中数学 来源: 题型:
【题目】一名学生骑自行车上学,从他家到学校的途中有个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.求:
()这名学生在途中遇到次红灯次数的概率.
()这名学生在首次停车前经过了个路口的概率.
()这名学生至少遇到一次红灯的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的图像可由的图像平移得到,对于任意的实数,均有成立,且存在实数,使得为奇函数.
(Ⅰ)求函数的解析式.
(Ⅱ)函数的图像与直线有两个不同的交点, ,若,,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 上顶点为,右焦点为,过右顶点作直线,且与轴交于点,又在直线和椭圆上分别取点和点,满足(为坐标原点),连接.
(1)求的值,并证明直线与圆相切;
(2)判断直线与圆是否相切?若相切,请证明;若不相切,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是
A.AC⊥BE B.EF∥平面ABCD
C.三棱锥A-BEF的体积为定值 D.异面直线AE,BF所成的角为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切圆M于A,B两点。
(1)若Q(1,0),求切线QA,QB的方程;
(2)求四边形QAMB面积的最小值;
(3)若|AB|=,求直线MQ的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“”是“对任意的正数, ”的( )
A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
【答案】A
【解析】分析:根据基本不等式,我们可以判断出“”?“对任意的正数x,2x+≥1”与“对任意的正数x,2x+≥1”?“a=
”真假,进而根据充要条件的定义,即可得到结论.
解答:解:当“a=”时,由基本不等式可得:
“对任意的正数x,2x+≥1”一定成立,
即“a=”?“对任意的正数x,2x+≥1”为真命题;
而“对任意的正数x,2x+≥1的”时,可得“a≥”
即“对任意的正数x,2x+≥1”?“a=”为假命题;
故“a=”是“对任意的正数x,2x+≥1的”充分不必要条件
故选A
【题型】单选题
【结束】
9
【题目】如图是一几何体的平面展开图,其中为正方形, , 分别为, 的中点,在此几何体中,给出下面四个结论:①直线与直线异面;②直线与直线异面;③直线平面;④平面平面.
其中一定正确的选项是( )
A. ①③ B. ②③ C. ②③④ D. ①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设坐标原点为O,过点P(x0,y0)做圆O:x2+y2=2的切线,切点为Q,
(1)求|OP|的值;
(2)已知点A(1,0)、B(0,1),点W(x,y)满足: 求点W的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com