【题目】有下列四个命题:①“若,则,互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若,则有实数解”的逆否命题;④“若,则”的逆否命题.其中真命题为________(填写所有真命题的序号).
科目:高中数学 来源: 题型:
【题目】总体由编号为01,02,03,,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( )
78 16 65 72 08 02 63 14 07 02 43 69 69 38 74 |
32 04 94 23 49 55 80 20 36 35 48 69 97 28 01 |
A. 05 B. 09 C. 07 D. 20
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=3-x,g(x)=log3(x+8).
(1)求f(1),g(1),f[g(1)],g[f(1)]的值;
(2)求f[g(x)],g[f(x)]的表达式并说明定义域;
(3)说明f[g(x)],g[f(x)]的单调性(不需要证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元。
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足:.
(1)若,求数列的通项公式;
(2)设数列的前项和为,且试确定的值,使得数列为等差数列;
(3)将数列中的部分项按原来顺序构成新数列,且,求证:存在无数个满足条件的无穷等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在直线l与曲线和曲线都相切,则称曲线和曲线为“相关曲线”,有下列四个命
题:
①有且只有两条直线l使得曲线和曲线为“相关曲线”;
②曲线和曲线是“相关曲线”;
③当时,曲线和曲线一定不是“相关曲线”;
④必存在正数使得曲线 和曲线 为“相关曲线”.
其中正确命题的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为,右顶点为,且过点,圆是以线段为直径的圆,经过点且倾斜角为的直线与圆相切.
(1)求椭圆及圆的方程;
(2)是否存在直线,使得直线与圆相切,与椭圆交于两点,且满足?若存在,请求出直线的方程,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com