【题目】给出下列四个命题: ①x0∈R,ln(x02+1)<0;
②x>2,x2>2x;
③α,β∈R,sin(α﹣β)=sin α﹣sin β;
④若q是¬p成立的必要不充分条件,则¬q是p成立的充分不必要条件.
其中真命题的个数为( )
A.1
B.2
C.3
D.4
【答案】A
【解析】解:①x0∈R,ln(x02+1)<0不正确,由于x∈R,y=ln(x2+1)≥ln1=0,故①错; ②x>2,x2>2x不正确,比如x=4,则x2=2x=16,故②错;
③α,β∈R,sin(α﹣β)=sin α﹣sin β不正确,比如α=60°,β=30°,
sin(α﹣β)=sin30°= ,sin α﹣sin β=sin60°﹣sin30°= ,显然不等,
应为α,β∈R,sin(α﹣β)=sin αcosβ﹣cosαsin β,故③错;
④若q是¬p成立的必要不充分条件,则p是¬q成立的必要不充分条件,
则¬q是p成立的充分不必要条件,故④正确.
其中真命题的个数为1.
故选:A.
【考点精析】掌握命题的真假判断与应用是解答本题的根本,需要知道两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
科目:高中数学 来源: 题型:
【题目】口袋中装有2个白球和n(n≥2,n N*)个红球.每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.
(I)用含n的代数式表示1次摸球中奖的概率;
(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;
(III)记3次摸球中恰有1次中奖的概率为f(p),当f(p)取得最大值时,求n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】王先生家住 A 小区,他工作在 B 科技园区,从家开车到公司上班路上有 L1 , L2 两条路线(如图),L1 路线上有 A1 , A2 , A3 三个路口,各路口遇到红灯的概率均为 ;L2 路线上有 B1 , B2 两个路.各路口遇到红灯的概率依次为 , .若走 L1 路线,王先生最多遇到 1 次红灯的概率为;若走 L2 路线,王先生遇到红灯次数 X 的数学期望为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋内装有6个球,每个球上都记有从1到6的一个号码,设号码为n的球重克,这些球等可能地从袋里取出(不受重量、号码的影响).
(1)如果任意取出1个球,求其重量大于号码数的概率;
(2)如果不放回地任意取出2个球,求它们重量相等的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小王、小张两位同学玩投掷正四面体(每个面都为等边三角形的正三棱锥)骰子(骰子质地均匀,各面上的点数分别为)游戏,规则:小王现掷一枚骰子,向下的点数记为,小张后掷一枚骰子,向下的点数记为,
(1)在直角坐标系中,以为坐标的点共有几个?试求点落在直线上的概率;
(2)规定:若,则小王赢,若,则小张赢,其他情况不分输赢,试问这个游戏公平吗?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知A,B,C为直角坐标系xOy中的三个定点
(Ⅰ)若点D为□ABCD的第四个顶点,求||;
(Ⅱ)若点P在直线OC上,且·=4,求点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且对任意正整数n,都有3an=2Sn+3成立.
(1)求数列{an}的通项公式;
(2)设bn=log3an , 求数列{ }的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com