精英家教网 > 高中数学 > 题目详情
证明:y=x2在[-2,-1]上是减函数.
考点:函数单调性的性质
专题:函数的性质及应用
分析:根据函数单调性的定义即可得到结论.
解答: 解:设x1,x2是[-2,-1]上任意两个变量,且-2≤x1<x2≤-1,
则f(x1)-f(x2)=
x
2
1
-
x
2
2
=(x1+x2)(x1-x2),
∵-2≤x1<x2≤-1,
∴x1-x2<0,∵-4<x1+x2<-2
∴f(x1)-f(x2)=
x
2
1
-
x
2
2
=(x1+x2)(x1-x2)>0,
即f(x1)>f(x2),
∴y=x2在[-2,-1]上是减函数.
点评:本题主要考查函数单调性的证明,利用函数的单调性的定义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足下列条件:
①首项a1=a,(a>3,a∈N*);
②当an=3k,(k∈N*)时,an+1=
an
3

③当an≠3k,(k∈N*)时,an+1=an+1.
(Ⅰ)当a4=1,求首项a之值;
(Ⅱ)当a=2014时,求a2014
(Ⅲ)试证:正整数3必为数列{an}中的某一项.

查看答案和解析>>

科目:高中数学 来源: 题型:

一条光线从点P(6,4)射出,经过点Q(2,1),又经x轴反射,求入射光线和反射光线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一圆的圆心P在直线y=x上,且该圆与直线x+2y-1=0相切,截y轴所得弦长为2,求此圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有7道题,其中5道甲类题,2道乙类题,张同学从中任取2道题解答.试求:
(1)所取的两道题都是甲类题的概率;
(2)所取的两道题不是同一类题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x-
x

(Ⅰ)判断
f(x)
x
的单调性;
(Ⅱ)求函数y=f(x)的零点的个数;
(Ⅲ)令g(x)=
ax2+ax
f(x)+
x
+lnx,若函数y=g(x)在(0,
1
e
)内有极值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2
x+1
x-1
,g(x)=log2(x-1)
(1)判断f(x)在区间(1,+∞)上的单调性,并用定义证明;
(2)记函数h(x)=g(2x+2)+kx,问:是否存在实数k使得函数h(x)为偶函数?若存在,请求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

全集U={(x,y)|x∈R,y∈R},A={(x,y)|y-
1
x
+1=1},B={(x,y)|y=x+2},则B∩∁UA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“H函数”.给出下列函数①y=x2;②y=ex+1;③y=2x-sinx;④f(x)=
ln|x|
 
 
 
x≠0
0
 
 
 
 
 
 
x=0
.以上函数是“H函数”的所有序号为
 

查看答案和解析>>

同步练习册答案