精英家教网 > 高中数学 > 题目详情
9.设f(x)=$\frac{e^x}{x-1}$,则函数f(x)的单调递增区间是(  )
A.(-∞2)B.(2,+∞)C.(0,+∞)D.(-∞,l)和(1,2)

分析 求函数的导数,利用函数单调性和导数之间的关系进行求解即可.

解答 解:函数的定义域为{x|x≠1},
函数的导数f′(x)=$\frac{{e}^{x}(x-1)-{e}^{x}}{(x-1)^{2}}$=$\frac{{e}^{x}(x-2)}{(x-1)^{2}}$,
由f′(x)>0,
解得x>2,
故函数的单调递减区间为(2,+∞),
故选:B

点评 本题主要考查函数单调区间的求解,求函数的导数,利用函数单调性和导数之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{2}a{x^2}$+2x+(2-a)lnx,
(1)当a=-2时,求f(x)的最大值;
(2)若函数f(x)在定义域内为单调函数,求实数a的取值范围;
(3)若曲线C:y=f(x)在点x=1处的切线l与C有且只有一个公共点,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线C:y=$\frac{1}{4}{x^2}$的焦点为F,过焦点的直线与抛物线交于A,B两点,且|AB|=$\frac{25}{6}$,(|AF|<|BF|),则|AF|:|BF|=2:3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知F是抛物线y2=8x的焦点,一条倾斜角为$\frac{π}{4}$的弦AB长为8$\sqrt{5}$(如图),求△FAB的面积和sin∠AFB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.A、B两站相距10千米,有两列火车匀速由A站开往B站,一辆慢车,从A站到B站需24分钟,另一列快车比慢车迟开6分钟,却早6分钟到达.
①试分别写出两车在此时间内离开A地的路程y(千米)关于慢车行驶时间x(分钟)的函数关系式;
②在同一坐标系中画出两函数的图象;
③求出两车在何时,离始发站多远相遇?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,抛物线C1:x2=2py(p>0)与椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个交点为T($\frac{4}{3}$,$\frac{1}{3}$),F(1,0)为椭圆C2的右焦点.
(1)求抛物线C1与椭圆C2的方程;
(2)设A($\frac{1}{2}$,$\frac{3}{2}$),过A作直线l交抛物线C1于M、N两点(M点在N点的左侧),l1、l2分别是过M、N且与抛物线C1相切的直线,直线l1,l2交于点B,直线l1与椭圆C2交于P、Q两点.
(Ⅰ)求证:B点在一条定直线上,并求出这条直线的方程;
(Ⅱ)设E(0,$\frac{2}{3}$),求△EPQ的面积的最大值.并求出此时B点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$=(-1,2$\sqrt{5}$,2),$\overrightarrow{b}$=(1,0,-2,),$\overrightarrow{c}$=$\overrightarrow{a}$+t$\overrightarrow{b}$,并且实数t满足关于x的方程x2-2tx+2t2-7t+12=0有实根,当|c|取最小值时,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在(ax6+$\frac{b}{x}$)4的二项展开式中,如果x3系数为20,那么ab3=(  )
A.20B.15C.10D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{e}^{ax}}{x}$(a∈R).
(1)若曲线f(x)在x=1的切线与直线x+e2y+1=0垂直,求曲线f(x)在x=1处的切线方程;
(2)若f(x)在[1,2]上最小值为e,求a的值.

查看答案和解析>>

同步练习册答案