精英家教网 > 高中数学 > 题目详情
1.已知$\overrightarrow{a}$=(-1,2$\sqrt{5}$,2),$\overrightarrow{b}$=(1,0,-2,),$\overrightarrow{c}$=$\overrightarrow{a}$+t$\overrightarrow{b}$,并且实数t满足关于x的方程x2-2tx+2t2-7t+12=0有实根,当|c|取最小值时,求t的值.

分析 实数t满足关于x的方程x2-2tx+2t2-7t+12=0有实根,可得△≥0,解得3≤t≤4.利用向量的坐标运算、模的计算公式可得|$\overrightarrow{c}$|=$\sqrt{5(t-1)^{2}+20}$,再利用二次函数的单调性即可得出.

解答 解:∵实数t满足关于x的方程x2-2tx+2t2-7t+12=0有实根,
∴△=4t2-4(2t2-7t+12)≥0,解得3≤t≤4.
∵$\overrightarrow{c}$=$\overrightarrow{a}$+t$\overrightarrow{b}$=(-1,2$\sqrt{5}$,2)+t(1,0,-2,)=(-1+t,2$\sqrt{5}$,2-2t),
∴|$\overrightarrow{c}$|=$\sqrt{(t-1)^{2}+(2\sqrt{5})^{2}+(2-2t)^{2}}$=$\sqrt{5(t-1)^{2}+20}$≥$2\sqrt{10}$,当且仅当t=3时取得最小值,
∴t=3.

点评 本题考查了一元二次方程有实数根与判别式的关系、向量的线性运算、向量模的计算公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax3+3x2-4x ( 其中实数a<0 )
(1)若y=f(x)在(-∞,1]上为减函数,在[1,2]上为增函数,求a的值.
(2)设g(x)=f (x)-ax2,当a=-3时,判断函数y=g (x)在R上的单调性,并说明理由.
(3)若对任意x1,x2∈[-1,$\frac{1}{2}$]且x1<x2,都有不等式f(x2)-f(x1)<a (x22-x12) 成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)的导函数y=f′(x)的图象如图所示,则函数f(x)的单调减区间是(-∞,-2]和[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)=$\frac{e^x}{x-1}$,则函数f(x)的单调递增区间是(  )
A.(-∞2)B.(2,+∞)C.(0,+∞)D.(-∞,l)和(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=lnx-x2的单调递增区间为(0,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知四棱锥p-ABCD中,pA⊥面ABCD,面ABCD是直角梯形,∠DAB=90°,∠ABC=45°,CB=$\sqrt{2}$,AB=2,PA=1.求证:BC⊥面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}的前n项和为Sn,若a1=1,4an-Sn+1=2.
(1)设bn=an+1-2an,求证:数列{bn}是等比数列;
(2)设cn=$\frac{{a}_{n}}{{2}^{n}}$,求证:数列{cn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.坐标平面上的点集S满足S={(x,y)|log2(x2-x+2)=2sin4y+2cos4y,y∈[-$\frac{π}{8}$,$\frac{π}{4}$],将点集S中的所有点向x轴作投影,所得投影线段的长度为(  )
A.1B.$\frac{\sqrt{3}+\sqrt{5}}{2}$C.$\sqrt{8\sqrt{2}-7}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某校开设5门不同的数学选修课,每位同学可以从中任选1门或2门课学习,甲、乙、丙三位同学选择的课没有一门是相同的,则不同的选法共有330种.

查看答案和解析>>

同步练习册答案