分析 求出抛物线的焦点和准线方程,设出直线方程,代入抛物线方程,消去x,运用韦达定理,结合抛物线的定义,求得斜率k,再解二次方程可得交点A,B的横坐标,进而得到纵坐标,再由定义可得AF,BF的长,即可得到结论.
解答 解:抛物线C:y=$\frac{1}{4}{x^2}$的焦点为F(0,1),准线为y=-1.
设直线为y=kx+1,
代入抛物线方程可得,x2-4kx-4=0,
x1+x2=4k,x1x2=-4,
即有y1+y2=k(x1+x2)+2=4k2+2,
由抛物线的定义可得|AB|=|AF|+|BF|=y1+y2+p=4k2+4=$\frac{25}{6}$,
解得k=±$\frac{1}{2\sqrt{6}}$,
即有直线为y=±$\frac{1}{2\sqrt{6}}$x+1,
由x2-$\frac{2}{\sqrt{6}}$x-4=0,可得x=$\sqrt{6}$或-$\frac{4}{\sqrt{6}}$,
可得y=$\frac{3}{2}$或$\frac{2}{3}$,
即有|AF|=$\frac{2}{3}$+1=$\frac{5}{3}$,|BF|=$\frac{25}{6}$-$\frac{5}{3}$=$\frac{15}{6}$,
即有|AF|:|BF|=2:3.
故答案为:2:3.
点评 本题考查抛物线的定义、方程和性质,主要考查抛物线的定义和准线方程的运用,同时考查直线方程和抛物线方程联立,运用韦达定理,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2013•f(ln2012)<2012•f(ln2013) 2014•g(2013)>2013•g(2014) | |
| B. | 2013•f(ln2012)>2012•f(ln2013) 2014•g(2013)>2013•g(2014) | |
| C. | 2013•f(ln2012)>2012•f(ln2013) 2014•g(2013)<2013•g(2014) | |
| D. | 2013•f(ln2012)<2012•f(ln2013) 2014•g(2013)<2013•g(2014) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞2) | B. | (2,+∞) | C. | (0,+∞) | D. | (-∞,l)和(1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{\sqrt{3}+\sqrt{5}}{2}$ | C. | $\sqrt{8\sqrt{2}-7}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com