精英家教网 > 高中数学 > 题目详情
6.若f(x)=ex,则$\underset{lim}{△x→0}$$\frac{f(1-3△x)-f(1)}{△x}$的值为(  )
A.3eB.-3eC.2eD.-2e

分析 由f′(x)=ex,$\underset{lim}{△x→0}$$\frac{f(1-3△x)-f(1)}{△x}$=-3f′(1),能求出结果.

解答 解:∵f(x)=ex
∴f′(x)=ex
∴$\underset{lim}{△x→0}$$\frac{f(1-3△x)-f(1)}{△x}$
=$\underset{lim}{-3△x→0}[\frac{f(-3△x+1)-f(1)}{-3△x}×(-3)]$
=-3$\underset{lim}{-3△x→0}\frac{f(-3△x+1)-f(1)}{-3△x}$
=-3f′(1)
=-3e.
故选:B.

点评 本题考查函数的极限值的求法,是基础题,解题时要认真审题,注意导数定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.求函数y=$\left\{\begin{array}{l}{-x+4,x≥2}\\{x+3,0<x≤1}\\{2x+3,-1≤x≤0}\end{array}\right.$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若2$\sqrt{2}$是b-1,b+1的等比中项,则b=±3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式组$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$所表示的平面区域的面积为(  )
A.$\frac{9}{4}$B.$\frac{3}{4}$C.$\frac{9}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为(  )m3
A.4B.$\frac{7}{3}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.目标函数z=x+y,变量x,y满足$\left\{\begin{array}{l}{2x+y≥4}\\{x-y≥-1}\\{x-2y≤2}\end{array}\right.$,则(  )
A.zmin=2,zmax=3B.zmin=2,无最大值
C.zmax=3,无最小值D.既无最大值,也无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥S-ABCD中,SA⊥底面ABCD,底面ABCD是直角梯形,AD⊥AB,BC∥AD,SA=AB=BC=2,AD=1,M,N分别是SB,SC的中点.
(Ⅰ)求证:AM∥平面SCD;
(Ⅱ)设平面SCD与平面SAB所成二面角为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.现如今,“网购”一词已不再新鲜,越来越多的人已经接受并喜欢上了这种购物的方式,但随之也产生了商品质量差与信誉不好等问题.因此,相关管理部门制定了针对商品质量和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)根据题中数据完成下表,并通过计算说明:能否有99.9%的把握认为,商品好评与服务好评有关?
对服务好评对服务不满意合计
对商品好评
对商品不满意
合计
(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量X:
①求对商品和服务全好评的次数X的分布列(概率用组合数算式表示);
②求X的数学期望和方差.
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知四点A(-3,1)、B(-1,-2)、C(2,0)、D(3m2,m+4).
(Ⅰ)求证:$\overrightarrow{AB}$⊥$\overrightarrow{BC}$;
(Ⅱ)若$\overrightarrow{AD}$∥$\overrightarrow{BC}$,求实数m的值.

查看答案和解析>>

同步练习册答案