| A. | zmin=2,zmax=3 | B. | zmin=2,无最大值 | ||
| C. | zmax=3,无最小值 | D. | 既无最大值,也无最小值 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求目标函数z=x+y的最值.
解答
解:作出不等式组对应的平面区域如图:(阴影部分).
由z=x+y得y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点C时,
直线y=-x+z的截距最小,此时z最小.
由$\left\{\begin{array}{l}{2x+y=4}\\{x-2y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,即C(2,0),
代入目标函数z=x+y得z=2+0=2.
即目标函数z=x+y的最小值为2.
无最大值.
故选:B.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | $\frac{4}{9}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3e | B. | -3e | C. | 2e | D. | -2e |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 男生 | 女生 | 总计 | |
| 收看 | 40 | ||
| 不收看 | 30 | ||
| 总计 | 60 | 110 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com