精英家教网 > 高中数学 > 题目详情
20.NBA决赛期间,某高校对学生是否收看直播进行调查,将得到的数据绘成如下的2×2列联表,但部分字迹不清:
男生女生总计
收看40
不收看30
总计60110
将表格填写完整,试说明是否收看直播与性别是否有关?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.0763.8415.0246.6357.87910.828

分析 根据所给数据得到列联表,把数据代入观测值公式中,做出观测值,同所给的临界值表进行比较,即可得出结论.

解答 解:

男生女生总计
收看402060
不收看203050
总计6050110
$k=\frac{{110×{{(40×30-20×20)}^2}}}{60×50×60×50}≈7.822>6.635$;             (10分)
所以有99%的把握认为是否收看直播与性别有关,(12分)

点评 本题考查了列联表、独立性检验,独立性检验的应用的步骤为:根据已知条件将数据归结到一个表格内,列出列联表,再根据列联表中的数据,代入公式,计算出k值,然后代入离散系数表,比较即可得到答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,-1),$\overrightarrow{b}$=(cosx,m),m∈R.
(1)若m=$\sqrt{3}$,且$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\frac{3sinx-cosx}{sinx+cosx}$的值;
(2)已知函数f(x)=2($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$-2m2-1,若函数f(x)在[0,$\frac{π}{2}$]上有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.目标函数z=x+y,变量x,y满足$\left\{\begin{array}{l}{2x+y≥4}\\{x-y≥-1}\\{x-2y≤2}\end{array}\right.$,则(  )
A.zmin=2,zmax=3B.zmin=2,无最大值
C.zmax=3,无最小值D.既无最大值,也无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某课题小组共有15名同学,其中有7名男生,现从中任意选出10人,用X表示这10人中男生的人数,则下列概率等于$\frac{{C}_{7}^{4}{C}_{8}^{6}}{{C}_{15}^{10}}$的是(  )
A.P(X≤4)B.P(X=4)C.P(X≤6)D.P(X=6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.现如今,“网购”一词已不再新鲜,越来越多的人已经接受并喜欢上了这种购物的方式,但随之也产生了商品质量差与信誉不好等问题.因此,相关管理部门制定了针对商品质量和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)根据题中数据完成下表,并通过计算说明:能否有99.9%的把握认为,商品好评与服务好评有关?
对服务好评对服务不满意合计
对商品好评
对商品不满意
合计
(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量X:
①求对商品和服务全好评的次数X的分布列(概率用组合数算式表示);
②求X的数学期望和方差.
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.化简:
(1)sin420°cos330°+sin(-690°)•cos(-660°);
(2)$\frac{sin(\frac{π}{2}+α)cos(\frac{π}{2}-α)}{cos(π+α)}$+$\frac{sin(π-α)cos(\frac{π}{2}+α)}{sin(π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.关于平面向量,有下列四个命题:
①若$\vec a•\vec b=\vec b•\vec c,则\vec a=\vec c$.
②$\vec a$=(1,1),$\vec b$=(2,x),若$\vec a+\vec b$与$4\vec b-2\vec a$平行,则x=2.
③非零向量$\vec a$和$\vec b$满足|$\vec a}$|=|${\vec b}$|=|${\vec a-\vec b}$|,则$\vec a$与$\vec a+\vec b$的夹角为60°.
④点A(1,3),B(4,-1),与向量$\overrightarrow{AB}$同方向的单位向量为($\frac{3}{5},-\frac{4}{5}$).
其中真命题的序号为②④.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2,-2),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b∈R,i是虚数单位,若3+bi与a-i互为共轭复数,则|a+bi|等于(  )
A.$\sqrt{2}$B.5C.$\sqrt{10}$D.10

查看答案和解析>>

同步练习册答案