分析 (1)通过讨论a的范围确定函数的单调性即可;
(2)问题转化为①若a>1,t∈[0,1],a2t+1+m≥0,得m≥-(a2t+1),②若0<a<1,t∈[0,1],m≤-(a2t+1),根据函数的单调性求出m的范围即可.
解答 解:(1)$f(x)={a^x}-\frac{1}{a^x}$的定义域为R,
设-∞<x1<x2<+∞,△x=x2-x1>0,
则$△y=f({x_2})-f({x_1})={a^{x_2}}-\frac{1}{{{a^{x_2}}}}-({a^{x_1}}-\frac{1}{{{a^{x_1}}}})$
=$({a^{x_2}}-{a^{x_1}})+\frac{1}{{{a^{x_1}}}}-\frac{1}{{{a^{x_2}}}}=({a^{x_2}}-{a^{x_1}})+\frac{{{a^{x_2}}-{a^{x_1}}}}{{{a^{{x_1}+{x_2}}}}}$
=$({a^{x_2}}-{a^{x_1}})(1+\frac{1}{{{a^{{x_1}+{x_2}}}}})$,
当a>1时,△y>0,f(x)为单调递增函数,
当0<a<1时,△y<0,f(x)为单调递减函数;
(2)当t∈[0,1]时,${a^t}({a^{2t}}-\frac{1}{{{a^{2t}}}})+m({a^t}-\frac{1}{a^t})≥0$,
即${a^t}({a^t}-\frac{1}{a^t})({a^t}+\frac{1}{a^t})+m({a^t}-\frac{1}{a^t})≥0$,
①若a>1,t∈[0,1],${a^t}-\frac{1}{a^t}≥0$,所以a2t+1+m≥0,得m≥-(a2t+1),
因为t∈[0,1],所以a2t+1∈[2,a2+1],-(a2t+1)∈[-1-a2,-2],
故m的取值范围是[-2,+∞);
②若0<a<1,t∈[0,1],${a^t}-\frac{1}{a^t}≤0$,所以m≤-(a2t+1),
因为t∈[0,1],所以a2t+1∈[a2+1,2],-(a2t+1)∈[-2,-1-a2],
故m的取值范围是(-∞,-2].
点评 本题考查了函数的单调性、最值问题,考查函数恒成立问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 8 | C. | 2 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{9}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y大大增大,x一定变大,z可能不变 | B. | y大大增大,x可能不变,z变大 | ||
| C. | y大大增大,x可能不变,z也不变 | D. | y可能不变,x可能不变,z可能不变 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | zmin=2,zmax=3 | B. | zmin=2,无最大值 | ||
| C. | zmax=3,无最小值 | D. | 既无最大值,也无最小值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | P(X≤4) | B. | P(X=4) | C. | P(X≤6) | D. | P(X=6) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | -1 | D. | -2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com