精英家教网 > 高中数学 > 题目详情
2.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示,现从这20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A;“抽出的学生英语口语测试成绩不低于85分”记为事件B.则P(A|B)=(  )
A.$\frac{5}{6}$B.$\frac{4}{9}$C.$\frac{1}{2}$D.$\frac{5}{9}$

分析 由茎叶图,确定P(A)=$\frac{1}{2}$,P(B)=$\frac{9}{20}$,P(AB)=$\frac{1}{4}$,再利用条件概率公式,即可求得结论.

解答 解:从这20名学生中随机抽取一人,基本事件总数为20个.
∵将“抽出的学生为甲小组学生”记为事件A,
∴事件A包含的基本事件有10个,故P(A)=$\frac{1}{2}$;
∵“抽出学生的英语口语测试成绩不低于85分”记为事件B,
∴事件B包含的基本事件有9个,P(B)=$\frac{9}{20}$,
又事件AB包含的基本事件有5个,故P(AB)=$\frac{1}{4}$,
故P(A|B)=$\frac{P(AB)}{P(B)}$=$\frac{5}{9}$,
故选:D.

点评 本题考查读茎叶图,考查条件概率的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.4B.5C.$\frac{11}{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(lg2)2+lg2•lg50+lg25-(${\frac{1}{2}}$)-1+8${\;}^{\frac{2}{3}}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,-1),$\overrightarrow{b}$=(cosx,m),m∈R.
(1)若m=$\sqrt{3}$,且$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\frac{3sinx-cosx}{sinx+cosx}$的值;
(2)已知函数f(x)=2($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$-2m2-1,若函数f(x)在[0,$\frac{π}{2}$]上有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若2$\sqrt{2}$是b-1,b+1的等比中项,则b=±3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面直角坐标系中,已知$\overrightarrow{OA}$=(-2,p),$\overrightarrow{OB}$=(3,3),若∠AOB=90°,则实数p的值为(  )
A.7B.8C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式组$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$所表示的平面区域的面积为(  )
A.$\frac{9}{4}$B.$\frac{3}{4}$C.$\frac{9}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.目标函数z=x+y,变量x,y满足$\left\{\begin{array}{l}{2x+y≥4}\\{x-y≥-1}\\{x-2y≤2}\end{array}\right.$,则(  )
A.zmin=2,zmax=3B.zmin=2,无最大值
C.zmax=3,无最小值D.既无最大值,也无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.关于平面向量,有下列四个命题:
①若$\vec a•\vec b=\vec b•\vec c,则\vec a=\vec c$.
②$\vec a$=(1,1),$\vec b$=(2,x),若$\vec a+\vec b$与$4\vec b-2\vec a$平行,则x=2.
③非零向量$\vec a$和$\vec b$满足|$\vec a}$|=|${\vec b}$|=|${\vec a-\vec b}$|,则$\vec a$与$\vec a+\vec b$的夹角为60°.
④点A(1,3),B(4,-1),与向量$\overrightarrow{AB}$同方向的单位向量为($\frac{3}{5},-\frac{4}{5}$).
其中真命题的序号为②④.(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案