精英家教网 > 高中数学 > 题目详情
14.已知集合M={1,2,3,4,9},N={x|x∈M且$\sqrt{x}$∈M},则M∩N中的元素个数为(  )
A.0B.1C.2D.3

分析 求出集合N,从而求出M、N的交集即可.

解答 解:∴M={1,2,3,4,9},
∴N={x|x∈M且$\sqrt{x}$∈M}={1,4,9},
∴M∩N={1,4,9},共3个元素,
故选:D.

点评 本题考查了集合的运算,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在区间[0,1]内随机取两个数分别为a,b,则使得方程x2+2ax+b2=0有实根的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由直线$y=-x+\frac{5}{2}$和曲线$y=\frac{1}{x}$围成的封闭图形的面积为$\frac{15}{8}$-2ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex+x2-x,g(x)=x2+ax+b,a,b∈R.
(Ⅰ)当a=1时,求函数F(x)=f(x)-g(x)的单调区间;
(Ⅱ)若曲线y=f(x)在点(0,1)处的切线l与曲线y=g(x)切于点(1,c),求a,b,c的值;
(Ⅲ)若f(x)≥g(x)恒成立,求a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠ACB=90°,AC=BC=1,AA1=2,D是棱AA1的中点.   
(Ⅰ)求证:B1C1∥平面BCD;
(Ⅱ)求三棱锥B-C1CD的体积;
(Ⅲ)在线段BD上是否存在点Q,使得CQ⊥BC1?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知奇函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,点M的坐标为(1,0)且△MNE为等腰直角三角形,当A取最大值时,f($\frac{1}{3}$)等于(  )
A.-$\frac{\sqrt{3}}{4}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.2017年3月2日至16日,全国两会在北京召开,甲、乙两市近5年与会代表名额数统计如图所示,设甲、乙的数据平均数分别为$\overline{{x}_{1}}$,$\overline{{x}_{2}}$,中位数分别为y1,y2,则(  )
A.$\overline{{x}_{1}}$>$\overline{{x}_{2}}$,y1>y2B.$\overline{{x}_{1}}$>$\overline{{x}_{2}}$,y1=y2C.$\overline{{x}_{1}}$<$\overline{{x}_{2}}$,y1=y2D.$\overline{{x}_{1}}$<$\overline{{x}_{2}}$,y1<y2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若命题p:“?x∈(-∞,0),x2≥0”,则¬p为?x0∈(-∞,0),x02<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)是R上的奇函数,当x>0时,f(x)=ex+x2,则不等式f(3-x2)>f(2x)的解集为(  )
A.(-3,1)B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-,1)∪(3,+∞)

查看答案和解析>>

同步练习册答案