分析 根据组合数的公式与性质,进行化简、运算即可.
解答 证明:(1)${C}_{n}^{m+1}$${÷C}_{n}^{m}$
=$\frac{n!}{(m+1)!•(n-m-1)!}$÷$\frac{n!}{m!•(n-m)!}$
=$\frac{m!•(n-m)!}{(m+1)!•(n-m-1)!}$
=$\frac{n-m}{m+1}$;
(2)${C}_{n-1}^{m}$${+C}_{n-2}^{m}$${+C}_{n-3}^{m}$+…+${C}_{m+1}^{m}$${+C}_{m}^{m}$
=${C}_{n-1}^{m}$${+C}_{n-2}^{m}$${+C}_{n-3}^{m}$+…+(${C}_{m+1}^{m}$+${C}_{m+1}^{m+1}$)
=${C}_{n-1}^{m}$${+C}_{n-2}^{m}$${+C}_{n-3}^{m}$+…+${C}_{m+2}^{m+1}$
=…=${C}_{n-1}^{m}$+${C}_{n-1}^{m+1}$=${C}_{n}^{m+1}$.
点评 本题考查了组合数公式的应用问题,也考查了计算与化简能力,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | 120 | B. | 140 | C. | 180 | D. | 240 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | $\frac{5}{4}$ | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com