| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
分析 根据条件即可得出点M为边AB的中点,且BC⊥AC,从而有$\overrightarrow{CM}•\overrightarrow{CA}=\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})•\overrightarrow{CA}$,再由AC=2,进行向量数量积的运算即可求出$\overrightarrow{CM}•\overrightarrow{CA}$的值.
解答
解:∵$\overrightarrow{BM}=\overrightarrow{MA}$,∴M为边AB的中点,如图所示:
∴$\overrightarrow{CM}=\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})$;
∵∠ACB=90°;
∴BC⊥AC;
∴$\overrightarrow{CB}•\overrightarrow{CA}=0$;
∴$\overrightarrow{CM}•\overrightarrow{CA}$=$\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})•\overrightarrow{CA}$
=$\frac{1}{2}{\overrightarrow{CA}}^{2}+\frac{1}{2}\overrightarrow{CB}•\overrightarrow{CA}$
=2+0
=2.
故选:D.
点评 考查向量相等的概念,以及向量的几何意义,向量加法的平行四边形法则,向量垂直的充要条件,以及向量数量积的运算及计算公式.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com