精英家教网 > 高中数学 > 题目详情
8.作图验证:
(1)$\frac{1}{2}(\overrightarrow{a}+\overrightarrow{b})+\frac{1}{2}(\overrightarrow{a}-\overrightarrow{b})=\overrightarrow{a}$
(2)$\frac{1}{2}(\overrightarrow{a}+\overrightarrow{b})-\frac{1}{2}(\overrightarrow{a}-\overrightarrow{b})=\overrightarrow{b}$.

分析 根据向量的三角形法则,画图验证即.

解答 证明:如图以A点为起点,作$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{BC}=\overrightarrow{b}$,$\overrightarrow{BE}=-\overrightarrow{b}$,
根据三角形法则,得$\overrightarrow{AE}=\overrightarrow{a}-\overrightarrow{b}$,$\overrightarrow{AC}=\overrightarrow{a}+\overrightarrow{b}$.
取AC中点K,连结BK,显然BK为△ACE的中位线.
(1)$\frac{1}{2}(\overrightarrow{a}+\overrightarrow{b})+\frac{1}{2}(\overrightarrow{a}-\overrightarrow{b})$
=$\frac{1}{2}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{AE}$
=$\overrightarrow{AK}+\overrightarrow{KB}$
=$\overrightarrow{AB}$
=$\overrightarrow{a}$;
(2)$\frac{1}{2}(\overrightarrow{a}+\overrightarrow{b})-\frac{1}{2}(\overrightarrow{a}-\overrightarrow{b})$
=$\frac{1}{2}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AE}$
=$\overrightarrow{KC}-\overrightarrow{KB}$
=$\overrightarrow{KC}+\overrightarrow{BK}$
=$\overrightarrow{BC}$
=$\overrightarrow{b}$.

点评 本题考查向量的三角形法则,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}2-(\frac{1}{2})^{x},&x≤0\\ 2{x}^{2}+1,&x>0\end{array}\right.$,g(x)=kx,若函数h(x)=f(x)-g(x)有3个不同的零点,则实数k的取值范围是(  )
A.(-∞,0)B.[2$\sqrt{2}$,+∞)C.(0,+∞)D.(2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线y=x2
(1)判断曲线在点P(1,1)处是否有切线,如果有,求切线的斜率,然后写出切线的方程;
(2)求曲线y=f(x)在x=2处的切线斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,底面ABCD是矩形,问底面的边BC上是否存在点E.
(1)使得∠PED=90°
(2)使∠PED为锐角.证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.底面边长为1的正四棱柱ABCD-A1B1C1D1中,M是DD1的中点,AM与CB1所成角的余弦值为$\frac{\sqrt{10}}{10}$,则点D到平面AMC的距离(  )
A.$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=μ$\overrightarrow{DC}$.若$\overrightarrow{AE}•\overrightarrow{AF}$=1,$\overrightarrow{CE}$•$\overrightarrow{CF}$=-$\frac{2}{3}$,则λ+μ=$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱柱ABCD-A1B1C1D1中,AB∥CD,AB1⊥BC,且AA1=AB.
(1)求证:AB∥平面D1DCC1
(2)求证:AB1⊥平面A1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=x2-ax+lnx(a为常数).
(Ⅰ)当a=3时,求函数f(x)的极值;
(Ⅱ)当0<a<2$\sqrt{2}$时,试判断f(x)的单调性;
(Ⅲ)对任意x0∈[1,2],使不等式f(x0)<mlna对任意a∈(0,$\frac{1}{2}$)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案