分析 (1)A1A⊥底面ABCD,则AC是A1C在底面ABCD的射影,AC⊥BD,则A1C⊥BD,同理A1C⊥DC1,又BD∩DC1=D,根据直线与平面垂直的判定定理可知A1C⊥平面BDC1.
(2)利用正方体的体积减去4个三棱锥的体积,即可求三棱锥A1-BDC1的体积.
解答 (1)证明:∵A1A⊥底面ABCD,则AC是A1C在底面ABCD的射影.
∵AC⊥BD.∴A1C⊥BD.
同理A1C⊥DC1,又BD∩DC1=D,
∴A1C⊥平面BDC1.
(2)解:三棱锥A1-BDC1的体积=1-4×$\frac{1}{3}×\frac{1}{2}×1×1×1$=$\frac{1}{3}$.
点评 本小题主要考查线面关系,以及三棱锥A1-BDC1的体积等基础知识,考查空间想象能力和推理运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com