精英家教网 > 高中数学 > 题目详情
20.若球的表面积变为原来的2倍,则半径变为原来的$\sqrt{2}$倍.

分析 设原球的半径r,变化之后半径为R,结合题意由球的表面积公式可得4πR2=2×4πr2,变形可得R=$\sqrt{2}$r,即可得答案.

解答 解:设原球的半径r,变化之后半径为R,
则原球的表面积为4πr2,变化之后的表面积为4πR2
其表面积扩大2倍,即4πR2=2×4πr2
则R=$\sqrt{2}$r,
即半径变为原来的$\sqrt{2}$倍;
故答案为:$\sqrt{2}$.

点评 本题考查球的表面积,解题的关键是掌握球的表面积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若函数f(x)为定义在R上的奇函数,且在(0,+∞)为增函数,又f(2)=0,则不等式x•f(x)>0的解集为(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象如图所示,若f(α)=3,α∈($\frac{π}{3}$,$\frac{5π}{6}$),则sinα的值为(  )
A.$\frac{3\sqrt{3}+4}{10}$B.$\frac{3\sqrt{3}-4}{10}$C.$\frac{3+4\sqrt{3}}{10}$D.$\frac{3-4\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=-x4+2x2+3,x∈[-3,2]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知A(6,0),B(0,6),C为椭圆$\frac{{x}^{2}}{20}$$+\frac{{y}^{2}}{5}$=1上一点,求△ABC面积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=x3-$\frac{3}{2}$x2+a在区间[-1,1]上的最大值为2,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=1nx+$\frac{a}{2}$x2-(a+1)x(a∈R).
(1)当a=$\frac{1}{2}$时,求函数(x)的单调区间;
(2)当x>1时,若f(x)$<\frac{a}{2}{x}^{2}$-x-a(a>0)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合M={a|cosα<sinα,0≤α≤2π},N={α|tanα<sinα},那么M∩N是(  )
A.($\frac{π}{2}$,π)B.($\frac{π}{4}$,$\frac{3π}{4}$)C.(π,$\frac{3π}{2}$)D.($\frac{3π}{4}$,$\frac{5π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a>1,x,y满足约束条件$\left\{\begin{array}{l}{y≥x}\\{y≤ax}\\{x+2y≤2}\end{array}\right.$,若目标函数z=x+ay最大值不小于$\frac{3}{2}$,则实数a的取值范围为(  )
A.a≥0B.a≥$\frac{3}{2}$C.a≥$\frac{3+\sqrt{5}}{4}$D.a≥$\frac{5}{4}$

查看答案和解析>>

同步练习册答案