精英家教网 > 高中数学 > 题目详情
10.若函数f(x)为定义在R上的奇函数,且在(0,+∞)为增函数,又f(2)=0,则不等式x•f(x)>0的解集为(-∞,-2)∪(2,+∞).

分析 根据函数的奇偶性和单调性之间的关系,画出函数f(x)的草图,即可得到不等式的解集.

解答 解:∵f(x)在R上是奇函数,且f(x)在(0,+∞)上是增函数,
∴f(x)在(-∞,0)上也是增函数,
由f(2)=0,得f(-2)=-f(2)=0,
即f(-2)=0,
由f(-0)=-f(0),得f(0)=0,
作出f(x)的草图,如图所示:
由图象,得xf(x)>0?$\left\{\begin{array}{l}{x>0}\\{f(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)<0}\end{array}\right.$,
解得x>2或x<-2,
∴x•f(x)>0的解集为(-∞,-2)∪(2,+∞)
故答案为:(-∞,-2)∪(2,+∞)

点评 本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,利用数形结合进行求解比较容易.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如图给出的是计算$\frac{1}{2}+\frac{1}{4}+…+\frac{1}{2016}$的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是(  )
A.i>1008,n=n+2B.i≤1008,n=n+2C.i>2016,n=n+1D.i>2016,n=n+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知抛物线x2=4y的焦点F的坐标为(0,1),若M是抛物线上一点,|MF|=4,O为坐标原点,则∠MFO=$\frac{π}{3}$或$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=sin(2x+φ)+cos(2x+φ)的图象与函数$g(x)=\sqrt{2}sin({2x+\frac{π}{3}})$的图象关于y轴对称,则φ的值可以为(  )
A.$-\frac{7π}{12}$B.$-\frac{5π}{12}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l1与直线l2:x-y+2=0的斜率相等,则直线l1的倾斜角为(  )
A.135°B.120°C.60°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.自然对数的底数e=1+$\frac{1}{1}$+$\frac{1}{2×1}$+$\frac{1}{3×2×1}$+$\frac{1}{4×3×2×1}$+…+$\frac{1}{n×(n-1)×…×2×1}$,根据这个公式画出求e的近似值(n=100)的程序框图,并写出对应的程序.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.抛物线y=-2x2的焦点坐标为(  )
A.(-$\frac{1}{8}$,0)B.($\frac{1}{4}$,0)C.(0,-$\frac{1}{8}$)D.(0,-$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若关于x的不等式(mx-1)(x-2)>0的解集为{x|$\frac{1}{m}$<x<2},则m的取值范围是(  )
A.m>0B.0<m<2C.m>$\frac{1}{2}$D.m<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若球的表面积变为原来的2倍,则半径变为原来的$\sqrt{2}$倍.

查看答案和解析>>

同步练习册答案