精英家教网 > 高中数学 > 题目详情
(本题满分12分)
已知函数.
(1)求函数的单调区间;       
(2)若,试求函数在此区间上的最大值与最小值.
(1)增区间   减区间  (2)本试题主要考查了导数在研究函数中的运用。
第一问中利用求导,令导数为零,再求f’(x)>0.得到单调增区间,
令f’(x)<0.得到单调减区间,
第二问中,利用第一问中的结论,可以判定函数在给定的区间上,先增再减再增,利用极值和端点值函数值的大小比较可得最值。
解:(1)增区间   减区间  (2)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数为常数)
(1)若上单调递增,且
(2)若f(x)在x=1和x=3处取得极值,且在x∈[-6,6]时,函数的图象在直线
的下方,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知时的极值为0.
(1)求常数ab的值;
(2)求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数有极值,则导函数的图象不可能是  (   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三次函数
(1)若函数过点且在点处的切线方程是,求函数的解析式;
(2)在(1)的条件下,若对于区间上任意两个自变量的值,都有,求实数的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(1)若处取得极值,求曲线在点处的切线方程;
(2)讨论函数的单调性;
(3)若函数上的最小值为2,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)= x/4+ln(x-2)/(x-4),(1)求函数f)x)的定义域和极值;(2)若函数(fx)在区间[a2-5a,8-3a]上为增函数,求实数a的取值范围;(3)函数f(x)的图象是否为中心对称图形?若是请指出对称中心,并证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数.
(Ⅰ)若,求实数的取值范围;
(Ⅱ)判断函数的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数时有极值10,则实数的值是( )
A.B.C.D.

查看答案和解析>>

同步练习册答案