精英家教网 > 高中数学 > 题目详情
17.若变量x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{y≥x}\\{3x+2y≤15}\end{array}\right.$,则ω=4x•2y的最大值是(  )
A.100B.240C.500D.512

分析 作出不等式组对应的平面区域,利用z的几何意义即可得到结论.

解答 解:作出不等式组对应的平面区域,如图所示,
ω=4x•2y=22x•2y=22x+y,设z=2x+y,即y=2x-z,
由图象可知当直线经过点C时,
直线y=2x-z的截距最小,此时z最大,
由$\left\{\begin{array}{l}{y=x}\\{3x+2y=15}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$,即C(3,3),
此时z的最大值为z=6+3=9,
则ω=4x•2y的最大值是29=512,
故选:D

点评 此题考查了简单线性规划,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,已知三视图中每个正方形边长为1,则此三视图所对应几何体的体积为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{5}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线l:y=x与双曲线$\frac{x^2}{2}$-$\frac{y^2}{4}$=1相交,则交点坐标是(  )
A.(2,2)B.(2,2)或(-2,-2)C.(-2,-2)D.(2,2)或(2,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.f(x)=cos(2x+φ)的图象关于点($\frac{4π}{3}$,0)成中心对称,且-$\frac{π}{2}$<φ<$\frac{π}{2}$,则函数y=f(x+$\frac{π}{3}$)为奇函数(“奇函数”“偶函数”或“非奇非偶函数”),且单调递减区间为[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.记数列{an}的前n项和为Sn,若Sn+(1+$\frac{2}{n}$)an=4,则a2016=(  )
A.$\frac{2016}{{2}^{2016}}$B.2016×22015C.2016×22016D.$\frac{2016}{{2}^{2015}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数y=2sin(2x-$\frac{π}{6}$).
(1)求函数单调增区间、最大值及取得最大值时的x的取值集合.
(2)经过怎样变化,可由y=sinx的图象得到函数y=2sin(2x-$\frac{π}{6}$)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对任意的x∈(0,+∞),不等式(x-a+ln$\frac{x}{a}$)(-2x2+ax+10)≤0恒成立,则实数a的取值范围是a=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将二进制数101101(2)化为十进制数,结果为45;再将结果化为8进制数,结果为55(8),三个数390,455,546的最大公约数是13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,侧面PAB⊥底面ABCD,PA=AD=AB=1,BC=2.
(1)证明:平面PBC⊥平面PDC;
(2)若∠PAB=120°,求点B到直线PC的距离.

查看答案和解析>>

同步练习册答案