精英家教网 > 高中数学 > 题目详情

设函数
(1)若时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.

(1) ,的极大值为;(2)

解析试题分析:(1)由函数的极值可知,对函数求导,将2代入可得,则有,令在区间上递增,在区间上递减,所以的极大值为;(2)在定义域上是增函数,则时恒成立,又,则需恒成立,即恒成立,,可得
解:(1)∵时有极值,∴有
 ∴, ∴ .
∴有

∴由

在区间上递增,在区间上递减
的极大值为 
(2)若在定义域上是增函数,则时恒成立

恒成立,
恒成立,
为所求.
考点:函数的极值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,函数.
⑴当时,函数的图象与函数的图象有公共点,求实数的最大值;
⑵当时,试判断函数的图象与函数的图象的公共点的个数;
⑶函数的图象能否恒在函数的上方?若能,求出的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数若对任意x1∈[0,1],存在x2∈[1,2],使,求实数a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求f(x)的单调区间和极值;
(2)关于的方程f(x)=a在区间上有两个根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,已知曲线在点处的切线方程是
(1)求的值;并求出函数的单调区间;
(2)求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其导函数为.
(1)若,求函数在点处的切线方程;
(2)求的单调区间;
(3)若为整数,若时,恒成立,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
⑴ 若函数的图象在点处的切线的倾斜角为,求上的最小值;
⑵ 若存在,使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,曲线在点处的切线与轴交点的横坐标为
(1)求
(2)证明:当时,曲线与直线只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a).
(1)设函数f(x)=ln x+ (x>1),其中b为实数.
①求证:函数f(x)具有性质P(b);
②求函数f(x)的单调区间;
(2)已知函数g(x)具有性质P(2).给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范围.

查看答案和解析>>

同步练习册答案