精英家教网 > 高中数学 > 题目详情

设函数,其导函数为.
(1)若,求函数在点处的切线方程;
(2)求的单调区间;
(3)若为整数,若时,恒成立,试求的最大值.

(1);(2)的单调减区间是:,增区间是:;(3)整数k的最大值为2.

解析试题分析:(1)时,,求导函数,可得切线方程;(2),当上单调递增,当时,通过可得函数的单调区间;(3)若时,恒成立,只需的最小值即可,,又单调递增,而,知存在唯一的零点,故存在唯一的零点,得.可得整数k的最大值为2.
解:(1)因为时,,所以
故切线方程是 
(2)的定义域为R,
上单调递增;
解得
变化时,变化如下表:











极小值
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数
(1)求函数的极值;
(2)设函数,对,都有,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底数).
(1)求曲线处的切线方程;
(2)若的一个极值点,且点满足条件:.
(ⅰ)求的值;
(ⅱ)若点是三个不同的点, 判断三点是否可以构成直角三
角形?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,用铁丝弯成一个上面是半圆,下面是矩形的图形,其面积为
为使所用材料最省,底宽应为多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求的单调增区间;
(2)时,函数有三个互不相同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数在区间上的值域;
(2)是否存在实数a,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.
(1)求函数的定义域(用区间表示);
(2)讨论函数上的单调性;
(3)若,求上满足条件的集合(用区间表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
(1)时,求最小值;
(2)若是单调减函数,求取值范围.

查看答案和解析>>

同步练习册答案