精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=x2-ax的图象在点A(1,f(1))处的切线与直线x+3y+2=0垂直.执行如图所示的程序框图,输出的k值是15.

分析 求导数,根据导数的几何意义,结合函数f(x)=x2-ax的图象在点A(1,f(1))处的切线l与直线x+3y=0垂直,建立方程,即可求出a的值,从而可求f(x)解析式,模拟运行程序,可得程序框图的功能是求S=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+..+$\frac{1}{{k}^{2}+k}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{k}-\frac{1}{k+1})$=1-$\frac{1}{k+1}$=$\frac{k}{k+1}$>$\frac{14}{15}$时k的值,
从而得解.

解答 解:∵f(x)=x2-ax,
∴f′(x)=2x-a,
∴根据导数的几何意义,y=f(x)的图象在点A(1,f(1))处的切线斜率k=f′(1)=2-a,
∵函数f(x)=x2-ax的图象在点A(1,f(1))处的切线l与直线x+3y=0垂直,
∴(2-a)×(-$\frac{1}{3}$)=-1,
∴a=-1,
∴f(x)=x2+x,
∴$\frac{1}{f(x)}=\frac{1}{{x}^{2}+x}=\frac{1}{x}-\frac{1}{x+1}$
从而模拟程序运行,可得程序框图的功能是求S=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+..+$\frac{1}{{k}^{2}+k}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{k}-\frac{1}{k+1})$=1-$\frac{1}{k+1}$=$\frac{k}{k+1}$>$\frac{14}{15}$时k的值,
可解得:k>14,
故答案为:15.

点评 本题考查利用导数求曲线上某点处的切线方程,具体涉及到导数的几何意义,直线垂直的性质等知识点,还考查了程序框图和算法,考查了循环结构,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知θ为三角形的一个内角,且sinθ+cosθ=$\frac{1}{2}$,则方程x2sinθ-y2cosθ=1表示(  )
A.焦点在x轴上的椭圆B.焦在点y轴上的椭圆
C.焦点在x轴上的双曲线D.焦点在y轴上的双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为得到函数$y=sin(3x+\frac{π}{4})$的图象,只要把函数$y=sin(x+\frac{π}{4})$图象上所有的点(  )
A.横坐标缩短到原来的$\frac{1}{3}$倍,纵坐标不变
B.横坐标伸长到原来的3倍,纵坐标不变
C.纵坐标伸长到原来的3倍,横坐标不变
D.纵坐标缩短到原来的$\frac{1}{3}$倍,横坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin($\frac{π}{4}$x+$\frac{π}{4}$),x∈R,且f(-2015)=3
(1)求A的值.
(2)指出函数f(x)在x∈[0,8]上的单调区间(不要求过程).
(3)若f($\frac{4a}{π}$-1)+f($\frac{4a}{π}$+1)=$\frac{3}{5}$,a∈[0,π],求cos2a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{FP}=3\overrightarrow{FQ}$,则|QF|=(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数f(x,y)=ln(1+x2+y2)+1-$\frac{{x}^{3}}{15}$-$\frac{{y}^{2}}{4}$的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i是虚数单位,若(-1-2i)z=1-i则$\overline z$在复平面上所代表的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-ax-b(a,b∈R)
(Ⅰ)若函数f(x)在x=1处取得极值1,求a,b的值
(Ⅱ)讨论函数f(x)在区间(1,+∞)上的单调性
(Ⅲ)对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1<x2),不等式f′(x0)<k恒成立,其中k为直线AB的斜率,x0=λx1+(1-λ)x2,0<λ<1,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z满足(1-i)z=i2015(其中i为虚数单位),则$\overline{z}$的虚部为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$iD.-$\frac{1}{2}$i

查看答案和解析>>

同步练习册答案