精英家教网 > 高中数学 > 题目详情
某省物理学会为了研究高一学生物理成绩与性别的关系,选取了一次模拟考试中某班级的30名男生和20名女生的物理成绩,并整理得到如图所示的频率分布直方图,记80分以上(包含80分)为优秀,80分以下为非优秀.

(Ⅰ)根据频率分布直方图,若按90%的可靠性要求,能否认为“成绩与性别有关系”?
(Ⅱ)从本班物理成绩为优秀的学生中任取3人,记女生的人数为随机变量X,求X的分布列和数学期望.
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

参考数据:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635
考点:独立性检验的应用,频率分布直方图
专题:应用题,概率与统计
分析:(Ⅰ)写出列联表,求出X2,与临界值比较,即可得到结论;
(Ⅱ)根据题意,得到变量的可能取值,结合变量对应的事件写出变量的概率,根据变量和概率的值写出分布列,做出期望值.
解答: 解:(Ⅰ)男生中,优秀有0.3×30=9人,非优秀有21人,女生中,优秀有0.15×20=3人,非优秀有17人.
2×2列联表
优秀非优秀合计
男生92130
女生31720
合计123850
K2=
50×(9×17-3×21)2
30×20×12×38
≈1.48<2.706
∴按90%的可靠性要求,不能认为“成绩与性别有关系”;
(Ⅱ)本班共有优秀12人,其中男9人,女3人,X=0,1,2,3,则
P(X=0)=
C
3
9
C
3
12
=
21
55
;P(X=1)=
C
1
3
C
2
9
C
3
12
=
27
55
;P(X=2)=
C
2
3
C
1
9
C
3
12
=
27
220
;P(X=3)=
C
3
3
C
3
12
=
1
220

∴X的分布列
X0123
P
21
55
27
55
27
220
1
220
数学期望EX=0×
21
55
+1×
27
55
+2×
27
220
+3×
1
220
=
3
4
点评:本题考查概率的计算,考查独立性检验知识的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线xcosα+ysinα+1=0,α∈(0,
π
2
)的倾斜角为(  )
A、α
B、
π
2
C、π-α
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的长轴长为4,不过原点O的斜率为-
3
2
的直线l与椭圆C相交于A、B两点,已知点P(2,1)且直线OP平分线段AB.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求△OAB面积取最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+3
3x
,数列{an}满足a1=1,an+1=f(
1
an

(1)求数列{an}的通项公式;
(2)令bn=
1
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sin(ωx+
π
4
)•cos(ωx+
π
4
)-sin(2ωx+π)(ω>0),且函数f(x)的最小正周期为π.
(1)求函数f(x)的解析式;
(2)若将函数f(x)的图象向右平移
π
3
个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,
π
2
]上的最大值和最小值,并指出此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三内角A,B,C所对边的长分别为a,b,c,设向量
m
=(3c-b,a-b),
n
=(3a+3b,c),
m
n

(1)求cosA的值;    
(2)求sin(2A+30°)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年推出一种新型家用轿车,购买时费用为14.4万元,每年应交付保险费、养路费及汽车油费共0.7万元,
汽车维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费用均比上一年增加0.2万元
(1)设该辆轿车使用n年的总费用(包括购买费用,保险费,养路费,汽车费及维修费)为f(n),求f(n)的表达式.
(2)这种汽车使用多少年报废最合算(即该车使用多少年,年平均费用最少)?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.
(1)求证:BD⊥平面AA1C1
(2)(文)设点E是直线B1C1上一点,且DE∥平面AA1B1B,求四棱锥E-AA1C1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1AC=
2
BC
,点D是AB的中点.
(1)证明:AC1∥平面B1CD;
(2)证明:B1C⊥平面ABC1
(3)证明:平面ABC1⊥平面B1CD.

查看答案和解析>>

同步练习册答案