分析 (1)根据等差数列的性质求出公差d,代入通项公式得出an,利用bn=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$证明{bn}为等比数列,从而得出bn;
(2)利用错位相减法求出Tn.
解答 解:(1)设数列{an}的公差为d,则$d=\frac{{{a_7}-{a_5}}}{2}=2$,
∴an=a5+(n-5)d=2n,
∵bn=2-2Sn,
当n=1,则b1=2-2b1,解得${b_1}=\frac{2}{3}$.
当n≥2时,由bn=2-2Sn,∴bn-1=2-2Sn-1,
∴bn-bn-1=-2(Sn-Sn-1)=-2bn.∴$\frac{b_n}{{{b_{n-1}}}}=\frac{1}{3}$.
∴{bn}是以${b_1}=\frac{2}{3}$为首项,$\frac{1}{3}$为公比的等比数列,
∴${b_n}=2•\frac{1}{3^n}$.
(2)${c_n}=\frac{1}{4}{a_n}{b_n}=\frac{1}{4}•2n•\frac{2}{3^n}=\frac{n}{3^n}$,
∴${T_n}=\frac{1}{3}+2•\frac{1}{3^2}+3•\frac{1}{3^3}+…+n•\frac{1}{3^n}$,①
∴$\frac{1}{3}{T_n}=\;1•\frac{1}{3^2}+2•\frac{1}{3^3}+…+(n-1)•\frac{1}{3^n}+n•\frac{1}{{{3^{n+1}}}}$,②
①-②得:$\frac{2}{3}{T_n}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+…+\frac{1}{3^n}-n•\frac{1}{{{3^{n+1}}}}$=$\frac{1}{2}({1-\frac{1}{3^n}})-\frac{n}{{{3^{n+1}}}}=\frac{1}{2}-\frac{2n+3}{6}\frac{1}{3^n}$,
∴${T_n}=\frac{3}{4}-\frac{2n+3}{4}•\frac{1}{3^n}$.
点评 本题考查了等差数列的性质,等比数列的判断与错位相减法求和,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com