精英家教网 > 高中数学 > 题目详情
4.对于函数f(x)=eax-lnx,(a是实常数),下列结论正确的一个是(  )
A.a=1时,B有极大值,且极大值点(1,3)
B.a=2时,A有极小值,且极小值点x0∈(0,$\frac{1}{4}$)
C.a=$\frac{1}{2}$时,D有极小值,且极小值点x0∈(1,2)
D.a<0时,C有极大值,且极大值点x0∈(-∞,0)

分析 求出函数的导数,根据函数极值存在的条件,以及函数零点的判断条件,判断f′(x)=0根的区间即可得到结论.

解答 解:∵f(x)=eax-lnx,
∴函数的定义域为(0,+∞),
函数的导数为f′(x)=aeax-$\frac{1}{x}$,若a=$\frac{1}{2}$,f(x)=${e}^{\frac{1}{2}x}$-lnx,
则f′(x)=${e}^{\frac{1}{2}x}-lnx$,
则f'(x)=$\frac{1}{2}{e}^{\frac{1}{2}x}-\frac{1}{x}$在(0,+∞)上单调递增,
f′(1)=$\frac{1}{2}{e}^{\frac{1}{2}}-1=\frac{1}{2}\sqrt{e}-1<0$,f′(2)═$\frac{1}{2}e-\frac{1}{2}=\frac{1}{2}(e-1)>0$
∴函数f(x)存在极小值,且f′(x)=0的根在区间(1,2)内,
故选:C

点评 本题主要考查函数零点的判断以及函数极值的求解,利用函数和导数之间的关系是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.不等式$\sqrt{1+lo{g}_{2}x}$>1-log2x的解集为(  )
A.[2,+∞)B.(1,8)C.(2,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=|x-2|,若b≠0,且a,b∈R时,都有不等式|a+b|+|a-2b|≥|b|•f(x)成立,则实数x的取值范围是[-1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)对任意x∈R满足f(x+1)=f(x-1),且f(x)是偶函数,当x∈[-1,0]时,f(x)=-x2+1,若方程f(x)=a|x|至少有4个相异实根,则实数a的取值范围是[0,4-2$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数$\frac{a+i}{2i}$的实部和虚部相等,则实数a=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.甲和乙等五名志愿者被随机地分到A、B、C三个不同的岗位服务,每个岗位至少有一名志愿者.若甲和乙不在同一岗位服务,则不同的分法有138种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点A(0,2),抛物线C:y2=ax,(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:$\sqrt{5}$,则a的值等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.△ABC中,内角A,B,C的对边分别为a,b,c,且满足(2c-a)cosB-bcosA=0
(Ⅰ)若b=7,a+c=13,求△ABC的面积;
(Ⅱ)求${sin^2}A+sin(C-\frac{π}{6})$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知正项数列{an}的前n项的和为Sn,满足4Sn=(an+1)2
(Ⅰ)求数列{an}通项公式;
(Ⅱ)设数列{bn}满足bn=$\frac{1}{{{a_n}{a_{n+1}}}}$(n∈N*),求证:b1+b2+…+bn<$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案