精英家教网 > 高中数学 > 题目详情
13.△ABC中,内角A,B,C的对边分别为a,b,c,且满足(2c-a)cosB-bcosA=0
(Ⅰ)若b=7,a+c=13,求△ABC的面积;
(Ⅱ)求${sin^2}A+sin(C-\frac{π}{6})$的取值范围.

分析 (Ⅰ)利用正弦定理把已知等式中的边转化为角的正弦,整理求得cosB,进而求得B.
(Ⅱ)把${sin^2}A+sin(C-\frac{π}{6})$转化为cosA的解析式,进而根据cosA的范围确定答案.

解答 解:(Ⅰ)∵(2c-a)cosB-bcosA=0,
由正弦定理得(2sinC-sinA)cosB-sinBcosA=0,
则2sinCcosB-sin(A+B)=0,
求得cosB=$\frac{1}{2}$,B=$\frac{π}{3}$.
由余弦定理得b2=a2+c2-2accosB,
即49=(a+c)2-2ac-2accosB,求得ac=40,
∴三角形△ABC面积S=$\frac{1}{2}$acsinB=10$\sqrt{3}$.
(Ⅱ)${sin^2}A+sin(C-\frac{π}{6})$=sin2A+sin($\frac{2π}{3}$-A-$\frac{π}{6}$)=sin2A+sin($\frac{π}{2}$-A)=-cos2A+cosA+1,A∈(0,$\frac{2π}{3}$),
令u=cosA∈(-$\frac{1}{2}$,1)
y=-u2+u+1∈($\frac{1}{4}$,$\frac{5}{4}$].

点评 本题主要考查了余弦定理和增弦定理的应用.解题的关键是利用正弦定理和余弦定理对边角问题进行转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≤0}\\{x-y+1≥0}\\{x+y-3≤0}\end{array}\right.$,则z=$\frac{x}{2}$+y的最大值为(  )
A.-$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对于函数f(x)=eax-lnx,(a是实常数),下列结论正确的一个是(  )
A.a=1时,B有极大值,且极大值点(1,3)
B.a=2时,A有极小值,且极小值点x0∈(0,$\frac{1}{4}$)
C.a=$\frac{1}{2}$时,D有极小值,且极小值点x0∈(1,2)
D.a<0时,C有极大值,且极大值点x0∈(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知i是虚数单位,则复数z=i2015的虚部是(  )
A.0B.-1C.1D.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)=ax2-4bx+1(a≠0).
(1)若a=1,b∈[-1,1],求函数y=f(x)在[1,+∞)上是增函数的概率;
(2)设(a,b)是区域$\left\{\begin{array}{l}x+y-8≤0\\ x>0\\ y>0\end{array}\right.$,内的随机点,求函数y=f(x)在[1,+∞)上的增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆 C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的两个焦点F1,F2,动点P在椭圆上,且使得∠F1PF2=90°的点P恰有两个,动点P到焦点F1的距离的最大值为2+$\sqrt{2}$.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)如图,以椭圆C1的长轴为直径作圆C2,过直线x=-2$\sqrt{2}$上的动点T作圆C2的两条切线,设切点分别为A,B,若直线AB与椭圆C1交于不同的两点C,D,求弦|CD|长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.双曲线$\frac{x^2}{{{m^2}-4}}+\frac{y^2}{m^2}$=1(m∈Z)的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{|{x+1}|+|{x-m}|-5}$(m>0)的定义域为R
(Ⅰ)求实数m的取值范围;
(Ⅱ)若a,b∈R,且a+b+m=4,a2+b2+m2=16,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某人最近7天收到的聊天信息数分别是5,10,6,8,9,7,11,则该组数据的方差为(  )
A.$\frac{24}{7}$B.4C.$\frac{16}{7}$D.3

查看答案和解析>>

同步练习册答案