精英家教网 > 高中数学 > 题目详情

【题目】如图,是底面边长为1的正三棱锥,分别为棱长上的点,截面底面,且棱台与棱锥的棱长和相等.(棱长和是指多面体中所有棱的长度之和)

(1)证明:为正四面体;

(2)若,求二面角的大小;(结果用反三角函数值表示)

(3)设棱台的体积为,是否存在体积为且各棱长均相等的直平行六面体,使得它与棱台有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.

(注:用平行于底的截面截棱锥,该截面与底面之间的部分称为棱台,本题中棱台的体积等于棱锥的体积减去棱锥的体积.)

【答案】(1)证明见解析;(2);(3)存在,证明见解析.(注:所构造直平行六面体不唯一,只需题目满足要求即可)

【解析】

1)根据棱长和相等可知,根据面面平行关系和棱锥为正三棱锥可证得,进而证得各棱长均相等,由此得到结论;(2)取的中点,连接,根据等腰三角形三线合一的性质和线面垂直判定定理可证得平面,由线面垂直性质可知,从而得到即为所求二面角的平面角;易知,从而得到,在中根据长度关系可求得,从而得到结果;(3)设直平行六面体的棱长均为,底面相邻两边夹角为,根据正四面体体积为,可验证出;又所构造六面体体积为,知,只需满足即可满足要求,从而得到结果.

(1)棱台与棱锥的棱长和相等

平面平面,三棱锥为正三棱锥

为正四面体

(2)取的中点,连接

平面 平面

平面

为二面角的平面角

由(1)知,各棱长均为

中点

即二面角的大小为:

(3)存在满足题意的直平行六面体,理由如下:

棱台的棱长和为定值,体积为

设直平行六面体的棱长均为,底面相邻两边夹角为

则该六面体棱长和为,体积为

正四面体体积为:

时,满足要求

故可构造棱长均为,底面相邻两边夹角为的直平行六面体即可满足要求

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若f (x)在区间(-∞,2)上为单调递增函数,求实数a的取值范围;

(2)若a=0,x0<1,设直线y=g(x)为函数f (x)的图象在x=x0处的切线,求证:f (x)≤g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】未来创造业对零件的精度要求越来越高.打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件.该技术应用十分广泛,可以预计在未来会有发展空间.某制造企业向高校打印实验团队租用一台打印设备,用于打印一批对内径有较高精度要求的零件.该团队在实验室打印出了一批这样的零件,从中随机抽取个零件,度量其内径的茎叶图如图(单位:).

(1)计算平均值与标准差

(2)假设这台打印设备打印出品的零件内径服从正态分布,该团队到工厂安装调试后,试打了个零件,度量其内径分别为(单位:):,试问此打印设备是否需要进一步调试?为什么?

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个顶点到平面的距离分别是3,3,6,则其重心到平面的距离为__________.(写出所有可能值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,双曲线的中心在坐标原点,焦点在轴上,为双曲线的顶点,为双曲线虚轴的端点,为右焦点,延长交于点,若是锐角,则该双曲线的离心率的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆F和抛物线,过F的直线与抛物线和圆依次交于ABCD四点,求的值是( )

A.1B.2C.3D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为D的函数,若同时满足下列条件:D内单调递增或单调递减;②存在区间,使上的值域为.那么把称为闭函数.下列结论正确的是( )

A.函数是闭函数

B.函数是闭函数

C.函数是闭函数

D.,函数是闭函数

E.,函数是闭函数

查看答案和解析>>

同步练习册答案