【题目】某中学为了加强学生数学核心素养的培养,锻炼学生自主探究的学习能力,他们以函数
为基本素材研究该函数的相关性质,某研究小组6位同学取得部分研究成果如下:
①同学甲发现:函数
的零点为
;
②同学乙发现:函数
是奇函数;
③同学丙发现:对于任意的
都有
;
④同学丁发现:对于任意的
,都有
;
⑤同学戊发现:对于函数
定义域中任意的两个不同实数
,
,总满足
;
⑥同学己发现:求使
的x的取值范围是
.
其中正确结论的序号为________.
科目:高中数学 来源: 题型:
【题目】已知函数
,函数
的图像为直线
.
(Ⅰ)当
时,若函数
的图像永远在直线
下方,求实数
的取值范围;
(Ⅱ)当
时,若直线
与函数
的图像的有两个不同的交点
,线段
的中点为
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某创业团队拟生产
两种产品,根据市场预测,
产品的利润与投资额成正比(如图1),
产品的利润与投资额的算术平方根成正比(如图2).(注: 利润与投资额的单位均为万元)
![]()
(注:利润与投资额的单位均为万元)
(1)分別将
两种产品的利润
、
表示为投资额
的函数;
(2)该团队已筹集到10 万元资金,并打算全部投入
两种产品的生产,问:当
产品的投资额为多少万元时,生产
两种产品能获得最大利润,最大利润为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,焦距为
,直线
:
与椭圆相交于
、
两点,
关于直线
的对称点
在椭圆上.斜率为
的直线
与线段
相交于点
,与椭圆相交于
、
两点.
![]()
(1)求椭圆的标准方程;
(2)求四边形
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年,在青岛海水稻研究发展宗鑫的试验基地,我国奇数团队培养处的最新一批海水稻活动丰收,由原亩产300公斤,条到最高620公斤,弦长测得其海水盐分浓度月为
。
(1)对
四种品种水稻随机抽取部分数据,获得如下频率分布直方图,根据直方图,说明这四种品种水稻中,哪一种平均产量最高,哪一种稳定(给出判断即可,不必说明理由);
![]()
(2)对盐碱度与抗病害的情况差得如右图和
的列联表的部分数据,填写列表,并以此说明是否有
的把握说明盐碱度对抗病虫害有影响。
![]()
![]()
附表及公式:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地级市共有200000中小学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元。经济学家调查发现,当地人均可支配年收入较上一年每增加
,一般困难的学生中有
会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生中有
转为一般困难,特别困难的学生中有
转为很困难。现统计了该地级市2013年到2017年共5年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份
取13时代表2013年,
与
(万元)近似满足关系式
,其中
为常数。(2013年至2019年该市中学生人数大致保持不变)
![]()
其中
, ![]()
(Ⅰ)估计该市2018年人均可支配年收入;
(Ⅱ)求该市2018年的“专项教育基金”的财政预算大约为多少?
附:对于一组具有线性相关关系的数据
,其回归直线方程
的斜率和截距的最小二乘估计分别为![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,近日我渔船编队在岛
周围海域作业,在岛
的南偏西20°方向有一个海面观测站
,某时刻观测站发现有不明船只向我渔船编队靠近,现测得与
相距31海里的
处有一艘海警船巡航,上级指示海警船沿北偏西40°方向,以40海里/小时的速度向岛
直线航行以保护我渔船编队,30分钟后到达
处,此时观测站测得
间的距离为21海里.
![]()
(Ⅰ)求
的值;
(Ⅱ)试问海警船再向前航行多少分钟方可到岛
?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com