精英家教网 > 高中数学 > 题目详情
已知函数图像上一点处的切线方程为,其中为常数.
(Ⅰ)函数是否存在单调减区间?若存在,则求出单调减区间(用表示);
(Ⅱ)若不是函数的极值点,求证:函数的图像关于点对称.
(Ⅰ)当时,,函数在区间上单调增增,不存在单调减区间;                                
时,函数存在单调减区间,为        
时,函数存在单调减区间,为         
(Ⅱ)证明见解析
(Ⅰ),    ……………1分
由题意,知
                                   ……………………2分
              …………………3分
①  当时,,函数在区间上单调增加,
不存在单调减区间;                                      ……………………5分
②  当时,,有





+
-
+




时,函数存在单调减区间,为        ……………7分
③  当时,,有





+
-
+




时,函数存在单调减区间,为          …………9分
(Ⅱ)由(Ⅰ)知:若不是函数的极值点,则
           …………………10分
设点是函数的图像上任意一点,则
关于点的对称点为

(或    
在函数的图像上.
由点的任意性知函数的图像关于点对称.         …………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知 函数f(x)=的图像关于原点对称,其中m,n为实常数。
(1)求m , n的值;
(2)试用单调性的定义证明:f (x) 在区间[-2, 2] 上是单调函数;
(3)[理科做] 当-2≤x≤2 时,不等式恒成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(a∈R).
(Ⅰ)当时,求的极值;
(Ⅱ)当时,求单调区间;
(Ⅲ)若对任意,恒有
成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知常数都是实数,函数的导函数为
(Ⅰ)设,求函数的解析式;
(Ⅱ)如果方程的两个实数根分别为,并且
问:是否存在正整数,使得?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象过(-1,1)点,其反函数的图象过(8,2)点。
(1)求a,k的值;
(2)若将的图象向在平移两个单位,再向上平移1个单位,就得到函数的图象,写出的解析式;
(3)若函数的最小值及取最小值时x的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,函数的图象与轴的交点也在函数的图象上,且在此点有公共切线.
(Ⅰ)求的值;
(Ⅱ)对任意的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象过原点,,函数y=f(x)与y=g(x)的图象交于不同两点A、B。
(1)若y=F(x)在x=-1处取得极大值2,求函数y=F(x)的单调区间;
(2)若使g(x)=0的x值满足,求线段AB在x轴上的射影长的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于函数f(x)=bx3+ax2-3x.
(1)若f(x)在x=1和x=3处取得极值,且f(x)的图象上每一点的切线的斜率均不超过2sintcost-2cos2t+,试求实数t的取值范围;
(2)若f(x)为实数集R上的单调函数,且b≥-1,设点P的坐标为(a,b),试求出点P的轨迹所围成的图形的面积S.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求下列函数的导数:
(1);(2);(3)

查看答案和解析>>

同步练习册答案