精英家教网 > 高中数学 > 题目详情
8.若函数y=log2(-x2+8x-7)在区间(m,m+1)上是增函数,则实数m的取值范围是[1,3].

分析 由对数式的真数大于0求出函数的定义域,再求出内函数二次函数的增区间,结合复合函数的单调性可得原函数的增区间,由函数y=log2(-x2+8x-7)在区间(m,m+1)上是增函数,可得(m,m+1)是原函数增区间的子集,然后结合两集合端点值间的关系列式求得m的范围.

解答 解:由-x2+8x-7>0,得1<x<7.
函数t=-x2+8x-7的对称轴方程为x=4,
∴函数t=-x2+8x-7在(1,4]上为增函数,
而外函数y=log2t是其定义域内的增函数,
则函数y=log2(-x2+8x-7)的增区间为(1,4].
要使函数y=log2(-x2+8x-7)在区间(m,m+1)上是增函数,
则$\left\{\begin{array}{l}{m≥1}\\{m+1≤4}\end{array}\right.$,解得1≤m≤3.
∴实数m的取值范围是[1,3].
故答案为:[1,3].

点评 本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.等边三角形ABC的三个顶点在抛物线y2=4x上,其中点A重合于坐标原点,求△ABC的边长|BC|和它的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列求导运算正确的是(  )
A.${({\frac{1}{x}})^′}=\frac{1}{x^2}$B.${({log_2}x)^’}=\frac{1}{xln2}$
C.(3x)′=3xlog3eD.${({\frac{e^x}{x}})^′}=\frac{{x{e^x}+{e^x}}}{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{4,x≥m}\\{{x}^{2}+4x-3,x<m}\end{array}\right.$若函数g(x)=f(x)-2x恰有三个不同的零点,则实数m的取值范围是(  )
A.(-2,1)B.(1,2)C.[-2,1]D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图1,ABCD 为梯形,其中AD∥BC,AB⊥BC,EF 为梯形中位线,将四边形ADFE 沿EF 折起到四边形A'D'FE 的位置,连接A'B,A'C,如图2.设点G 为线段A'B 上不同于A',B 的任意一点.
(Ⅰ)求证:EF∥平面A'BC;
(Ⅱ)若点G 为线段A'B 的中点,求证:A'B⊥平面GEF;
(Ⅲ)作出平面GEF 与平面A'BC的交线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知三角形ABC中,角A,B,C成等差数列,且$2sinCcosA+\sqrt{3}sinA=2sinB,AD$为角A的内角平分线,$AD=\sqrt{6}$.
(1)求三角形内角C的大小;
(2)求△ABC面积的S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥E-ABCD中,平面ABE⊥底面ABCD,侧面AEB为等腰直角三角形,∠AEB=$\frac{π}{2}$,底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=2CD=2BC
(1)求直线EC与平面ABE所成角的正弦值;
(2)线段EA上是否存在点F,使EC∥平面FBD?若存在,求出$\frac{EF}{EA}$;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设$\overrightarrow{e_1},\overrightarrow{e_2}$是不共线的向量,$\overrightarrow a=\overrightarrow{e_1}+k\overrightarrow{e_2}$,$\overrightarrow b=k\overrightarrow{e_1}+\overrightarrow{e_2}$,若$\overrightarrow a$与$\overrightarrow b$共线,则实数k为(  )
A.0B.-1C.-2D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{e^x}{x+1}$.
(1)求f(x)在(1,f(1))处的切线方程;
(2)若关于x的不等式(x+1)f(x)≥$\frac{1}{2}{x^2}$+x+a在[0,+∞)上恒成立,求实数a的取值范围;
(3)设函数g(x)=$\frac{(x-1)(x+m)}{lnx}$,其定义域是D,若关于x的不等式(x+1)f(x)<g(x)在D上有解,求整数m的最小值.(参考数据:$\sqrt{e}$=1.65,ln2=0.69)

查看答案和解析>>

同步练习册答案