精英家教网 > 高中数学 > 题目详情
15.经过点(0,2),(-3,0)的椭圆方程是$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$,其焦距是2$\sqrt{5}$.

分析 求出椭圆的半长轴,半短轴,得到椭圆的方程,求出半焦距,即可.

解答 解:经过点(0,2),(-3,0)的椭圆,
可得a=3,b=2,焦点在x轴,
∴椭圆的方程是:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$,
椭圆的焦距为:2c=2$\sqrt{9-4}$=2$\sqrt{5}$.
故答案为:$\frac{x^2}{9}+\frac{y^2}{4}=1;2\sqrt{5}$

点评 本题考查椭圆的简单性质椭圆的方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=-$\frac{1}{2}{(x-5)^2}$+6lnx.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求函数y=f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下面是关于复数z=$\frac{2}{1-i}$的四个命题,p1:|z|=2;p2:z2=2i;p3:z的共轭复数为-1+i;p4:z的虚部为1,其中为真命题的是(  )
A.¬(p1∨p2B.(¬p2)∨p3C.p3∧(¬p4D.p2∧p4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一口袋中有5只球,标号分别为1,2,3,4,5.
(1)如果从袋中同时取出3只,以ξ表示取出的三只球的最小号码,求ξ的分布列;
(2)如果从袋中取出1只,记录号码后放回袋中,再取1只,记录号码后放回袋中,这样重复三次,以η表示三次中取出的球的最小号码,求η的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个正三棱柱的侧棱长与底面边长相等,表面积为12+2$\sqrt{3}$,它的三视图中,俯视图如图所示,侧视图是一个矩形,则正三棱柱绕上、下底面中心连线旋转30°后的正视图面积为(  )
A.4B.2$\sqrt{3}$C.2D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线是3x-4y=0,则该双曲线的离心率为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设点P为双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)上一点,F1,F2分别是左右焦点,I是△PF1F2的内心,若△IPF1,△IPF2,△IF1F2的面积S1,S2,S3满足2(S1-S2)=S3,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=-x3+x2-ax+1是R上的单调递减函数,则实数a的取值范围为(  )
A.[-3,+∞)B.(-∞,-$\frac{1}{3}$]C.[$\frac{1}{3}$,+∞)D.(-∞,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=alnx+$\frac{{x}^{2}}{2}$-(a+1)x+$\frac{{a}^{2}}{2}$.
(1)若f′(2)=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若f(x)有一个零点,求正数a的取值范围.

查看答案和解析>>

同步练习册答案