精英家教网 > 高中数学 > 题目详情
3.若$\overline z$是z的共轭复数,且满足$\overline z({1-i})$=3+i,则z=(  )
A.1+2iB.-1+2iC.1-2iD.-1-2i

分析 利用复数的运算法则、共轭复数的定义即可得出.

解答 解:$\overline z({1-i})$=3+i,∴$\overline z({1-i})$(1+i)=(3+i)(1+i),∴2$\overline{z}$=2+4i,即$\overline{z}$=1+2i.  
则z=1-2i.
故选:C.

点评 本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若正整数N除以正整数m后的余数为n,则记为N≡n(bmodm),例如10≡4(bmod6),如图程序框图的算法源于我国古代《孙子算经》中的“孙子定理”的某一环节,执行该框图,输入a=2,b=3,c=5,则输出的N=(  )
A.6B.9C.12D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上有一个点A,它关于原点的对称点为B,点F为椭圆的右焦点,且满足AF⊥BF,当∠ABF=$\frac{π}{12}$时,椭圆的离心率为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点M(x,y)为平面区域D:$\left\{\begin{array}{l}{x-y≥0}\\{y-\frac{1}{x}≤0}\\{y≥a,(0<a<1)}\end{array}\right.$内的一个动点,若z=$\frac{y+1}{x}$的最大值为3,则区域D的面积为(  )
A.ln2+$\frac{5}{8}$B.ln2-$\frac{1}{2}$C.ln2+$\frac{1}{8}$D.ln2-$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若a=2,c=3,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=$\frac{f(b)-f(a)}{b-a}$,则称函数y=f(x)是[a,b]上的“平均值函数”,x0而是它的一个均值点.
例如y=|x|是[-2,2]上的“平均值函数”,0就是它的均值点.给出以下命题:
①函数f(x)=sinx-1是[-π,π]上的“平均值函数”;
②若y=f(x)是[a,b]上的“平均值函数”,则它的均值点x0≤$\frac{a+b}{2}$;
③若函数f(x)=x2+mx-1是[-1,1]上的“平均值函数”,则实数m∈(-2,0);
④若f(x)=lnx是区间[a,b](b>a≥1)上的“平均值函数”,x0是它的一个均值点,则lnx0<$\frac{1}{{\sqrt{ab}}}$.
其中的真命题有①③④(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知3sin2θ=5cosθ+1,则cos(π+2θ)=$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥1}\\{x≤2}\end{array}\right.$,则z=$\frac{y+3}{x}$的最小值为(  )
A.-1B.7C.$\frac{5}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义运算$|\begin{array}{l}{a}&{c}\\{b}&{d}\end{array}|$=ad-bc,复数z满足$|\begin{array}{l}{z}&{1}\\{i}&{i}\end{array}|$=2+i,则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案