11£®¹«ÔªÇ°3ÊÀ¼Í£¬¹ÅÏ£À°Å·¼¸ÀïµÃÔÚ¡¶¼¸ºÎÔ­±¾¡·ÀïÌá³ö£º¡°ÇòµÄÌå»ý£¨V£©ÓëËüµÄÖ±¾¶£¨D£©µÄÁ¢·½³ÉÕý±È¡±£¬´Ë¼´V=kD3£¬Å·¼¸ÀïµÃδ¸ø³ökµÄÖµ.17ÊÀ¼ÍÈÕ±¾Êýѧ¼ÒÃǶÔÇóÇòµÄÌå»ýµÄ·½·¨»¹²»Á˽⣬ËûÃǽ«Ìå»ý¹«Ê½V=kD3Öеij£Êýk³ÆÎª¡°Á¢Ô²ÂÊ¡±»ò¡°Óñ»ýÂÊ¡±£®ÀàËÆµØ£¬¶ÔÓڵȱßÔ²Öù£¨Öá½ØÃæÊÇÕý·½ÐεÄÔ²Öù£©¡¢Õý·½ÌåÒ²¿ÉÀûÓù«Ê½V=kD3ÇóÌå»ý£¨ÔڵȱßÔ²ÖùÖУ¬D±íʾµ×ÃæÔ²µÄÖ±¾¶£»ÔÚÕý·½ÌåÖУ¬D±íʾÀⳤ£©£®¼ÙÉèÔËÓôËÌå»ý¹«Ê½ÇóµÃÇò£¨Ö±¾¶Îªa£©¡¢µÈ±ßÔ²Öù£¨µ×ÃæÔ²µÄÖ±¾¶Îªa£©¡¢Õý·½Ì壨ÀⳤΪa£©µÄ¡°Óñ»ýÂÊ¡±·Ö±ðΪk1¡¢k2¡¢k3£¬ÄÇôk1£ºk2£ºk3£¨¡¡¡¡£©
A£®$\frac{1}{4}£º\frac{1}{6}£º\frac{1}{¦Ð}$B£®$\frac{¦Ð}{6}£º\frac{¦Ð}{4}$£º2C£®2£º3£º2¦ÐD£®$\frac{¦Ð}{6}£º\frac{¦Ð}{4}$£º1

·ÖÎö ¸ù¾ÝÇò¡¢Ô²Öù¡¢Õý·½ÌåµÄÌå»ý¼ÆË㹫ʽ¡¢Àà±ÈÍÆÁ¦¼´¿ÉµÃ³ö£®

½â´ð ½â£º¡ß${V_1}=\frac{4}{3}¦Ð{R^3}=\frac{4}{3}¦Ð{£¨\frac{a}{2}£©^3}=\frac{¦Ð}{6}{a^3}⇒{k_1}=\frac{¦Ð}{6}$£»
${V_2}=¦Ð{R^2}a=¦Ð{£¨\frac{a}{2}£©^2}a=\frac{¦Ð}{4}{a^3}⇒{k_2}=\frac{¦Ð}{4}$£»
${V_3}={a^3}⇒{k_3}=1$£»
¹Ê${k_1}£º{k_2}£º{k_3}=\frac{¦Ð}{6}£º\frac{¦Ð}{4}£º1$£®

µãÆÀ ±¾Ì⿼²éÁËÇò¡¢Ô²Öù¡¢Õý·½ÌåµÄÌå»ý¼ÆË㹫ʽ¡¢Àà±ÈÍÆÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªF1£¬F2·Ö±ðΪÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©×ó¡¢ÓÒ½¹µã£¬µãP£¨1£¬y0£©ÔÚÍÖÔ²ÉÏ£¬ÇÒPF2¡ÍxÖᣬ¡÷PF1F2µÄÖܳ¤Îª6£»
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©E¡¢FÊÇÇúÏßCÉÏÒìÓÚµãPµÄÁ½¸ö¶¯µã£¬Èç¹ûÖ±ÏßPEÓëÖ±ÏßPFµÄÇãб½Ç»¥²¹£¬Ö¤Ã÷£ºÖ±ÏßEFµÄбÂÊΪ¶¨Öµ£¬²¢Çó³öÕâ¸ö¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÉèÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe=$\frac{1}{2}$£¬µãMÔÚÍÖÔ²CÉÏ£¬µãMµ½ÍÖÔ²CµÄÁ½¸ö½¹µãµÄ¾àÀëÖ®ºÍÊÇ4£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÈôÍÖÔ²C1µÄ·½³ÌΪ$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1£¨m£¾n£¾0£©£¬ÍÖÔ²C2µÄ·½³ÌΪ$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=¦Ë£¨¦Ë£¾0£¬ÇҦˡÙ1£©£¬Ôò³ÆÍÖÔ²C2ÊÇÍÖÔ²C1µÄ¦Ë±¶ÏàËÆÍÖÔ²£®ÒÑÖªÍÖÔ²C2ÊÇÍÖÔ²CµÄ3±¶ÏàËÆÍÖÔ²£®ÈôÍÖÔ²CµÄÈÎÒâÒ»ÌõÇÐÏßl½»ÍÖÔ²C2ÓÚM£¬NÁ½µã£¬OÎª×ø±êÔ­µã£¬ÊÔÑо¿µ±ÇÐÏßl±ä»¯Ê±¡÷OMNÃæ»ýµÄ±ä»¯Çé¿ö£¬²¢¸øÓèÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èôx¡¢yÂú×㣨x-2£©2+£¨y-2£©2=1£¬Ôò|$\sqrt{3}$x+y-1|-2$\sqrt{£¨x-\sqrt{3}£©^{2}+£¨y-2£©^{2}}$µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÒÔÔ­µãΪԲÐÄ£¬ÒÔÍÖÔ²µÄ¶Ì°ëÖáΪ°ë¾¶µÄÔ²ÓëÖ±Ïßx-y+$\sqrt{6}$=0ÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýÍÖÔ²µÄÓÒ½¹µãFµÄÖ±Ïßl1ÓëÍÖÔ²½»ÓÚA¡¢B£¬¹ýFÓëÖ±Ïßl1´¹Ö±µÄÖ±Ïßl2ÓëÍÖÔ²½»ÓÚC¡¢D£¬ÓëÖ±Ïßl3£ºx=4½»ÓÚP£»
¢ÙÇóÖ¤£ºÖ±ÏßPA¡¢PF¡¢PBµÄбÂÊkPA£¬kPF£¬kPB³ÉµÈ²îÊýÁУ»
¢ÚÊÇ·ñ´æÔÚ³£Êý¦ËʹµÃ|AB|+|CD|=¦Ë|AB|•|CD|³ÉÁ¢£¬Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö¶¥µãΪB£¨0£¬1£©£¬¹ý½¹µãÇÒ´¹Ö±ÓÚ³¤ÖáµÄÏÒ³¤Îª$\sqrt{2}$£¬Ö±Ïßl½»ÍÖÔ²C1ÓÚM£¬NÁ½µã£®
£¨¢ñ£© ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨¢ò£©Èô¡÷BMNµÄÖØÐÄÇ¡ºÃΪÍÖÔ²µÄÓÒ½¹µãF£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨¢ó£©Ö±ÏßlÓëÍÖÔ²C2£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=¦Ë£¨¦Ë¡ÊR£¬¦Ë£¾1£©½»ÓÚP£¬QÁ½µã£¨Èçͼ£©£¬ÇóÖ¤|PM|=|NQ|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®º¯Êýy=lg£¨10x+1£©-$\frac{x}{2}$µÄÆæÅ¼ÐÔÊÇżº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª¶¯Ô²C¹ý¶¨µã£¨1£¬0£©ÇÒÓëÖ±Ïßx=-1ÏàÇÐ
£¨1£©Çó¶¯Ô²Ô²ÐÄCµÄ¹ì¼£·½³Ì£»
£¨2£©Éè¹ý¶¨µãM £¨-4£¬0£©µÄÖ±Ïß?ÓëÔ²ÐÄCµÄ¹ì¼£ÓÐÁ½¸ö½»µãA£¬B£¬×ø±êÔ­µãΪO£¬Éè¡ÏxOA=¦Á£¬¡ÏxOB=¦Â£¬ÊÔ̽¾¿¦Á+¦ÂÊÇ·ñΪ¶¨Öµ£¬ÈôÊǶ¨Öµ£¬Çó¶¨Öµ£¬Èô²»ÊǶ¨Öµ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=a-$\frac{1}{x}$-lnx£¨a¡ÊR£©£¬Èôf£¨x£©ÓÐÁ½Áãµãx1£¬x2£¨x1£¼x2£©£¬Çóx1+x2£¼3ea-1-1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸