精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=a-$\frac{1}{x}$-lnx(a∈R),若f(x)有两零点x1,x2(x1<x2),求x1+x2<3ea-1-1.

分析 由函数零点存在定理,知f(x)=0,构造函数g(x)=ax-1-xlnx,利用导数函数的极值的关系,求出函数的极大值为pp=ea-1,再构造函数m(x)=lnx-$\frac{2(x-p)}{x+p}$-lnp,通过导数判断单调性,整理,变形,即可得证.

解答 解:∵f(x)=0,
∴ax-1-xlnx=0,
设g(x)=ax-1-xlnx,
故x1,x2也是g(x)=0的两个零点.
由g′(x)=a-1-lnx=0,得x=ea-1
当g′(x)>0时,即0<x<ea-1,函数g(x)单调递增,
当g′(x)<0时,即x>ea-1,函数g(x)单调递减,
p=ea-1pgx)的唯一最大值点,故有$\left\{\begin{array}{l}{g(p)>0}\\{{x}_{1}<p<{x}_{2}}\end{array}\right.$,
作函数m(x)=lnx-$\frac{2(x-p)}{x+p}$-lnp,
则m′(x)=$\frac{(x-p)^{2}}{x(x+p)^{2}}$≥0,
故m(x)单调递增.
x>p时,g(x)>g(p)=0;当0<x<p时,g(x)<0.
于是,ax1-1=x1lnx1<$\frac{2{x}_{1}({x}_{1}-p)}{{x}_{1}+p}$+x1lnp.
整理,得(2+lnp-a)x12-(2p+ap-plnp-1)x1+p>0,
即x12-(3ea-1-1)x1+ea-1>0.
同理x22-(3ea-1-1)x2+ea-1<0. 
故x22-(3ea-1-1)x2+ea-1<x12-(3ea-1-1)x1+ea-1
即(x2+x1)(x2-x1)<(3ea-1-1)(x2-x1),
于是x1+x2<3ea-1-1.

点评 本题考查函数的性质和运用,主要考查函数的零点的求法和取值范围,同时考查导数的运用:求单调区间和极值、最值,运用构造函数判断单调性是解题的关键,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V)与它的直径(D)的立方成正比”,此即V=kD3,欧几里得未给出k的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式V=kD3中的常数k称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式V=kD3求体积(在等边圆柱中,D表示底面圆的直径;在正方体中,D表示棱长).假设运用此体积公式求得球(直径为a)、等边圆柱(底面圆的直径为a)、正方体(棱长为a)的“玉积率”分别为k1、k2、k3,那么k1:k2:k3(  )
A.$\frac{1}{4}:\frac{1}{6}:\frac{1}{π}$B.$\frac{π}{6}:\frac{π}{4}$:2C.2:3:2πD.$\frac{π}{6}:\frac{π}{4}$:1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设随即变量X服从标准正态分布,已知P(X≤1.88)=0.97,则P(|X|≤1.88)=(  )
A.0.94B.0.97C.0.06D.0.03

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=mx+$\frac{1}{x}$-2(m为参数).
(1)当m=1时,求函数f(x)的零点;
(2)当m≠0时,求函数h(x)=xf(x)的单调递减区间;
(3)若对任意x∈(0,1]恒有2f(x)>2,试确定参数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-2|-3.
(1)若f(x)<0,求x的取值范围;
(2)在(1)的条件下,求g(x)=3$\sqrt{x+4}$+4$\sqrt{|x-6|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.比较tan$\frac{15π}{7}$与tan(-$\frac{17π}{9}$)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C的中心为原点,焦点F1,F2在x轴上,其离心率为$\frac{\sqrt{2}}{2}$,且过点($\frac{\sqrt{2}}{2},\frac{1}{2}$).
(1)求椭圆C的标准方程;
(2)已知椭圆mx2+ny2=1在其上一点(x0,y0)处的切线方程是mx0x+ny0y=1,P是椭圆C上任意一点,在点P处作椭圆C的切线l,F1,F2到l的距离分别为d1,d2.探究:d1•d2是否为定值?若是,求出定值;若不是说明理由;
(3)求(2)中d1+d2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,直线l:y=-x+1与椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A、B两点.
(Ⅰ)若椭圆的焦距为2,离心率e=$\frac{\sqrt{3}}{3}$,求△OAB的面积;
(Ⅱ)若以A、B为直径的圆经过原点,且椭圆的长轴2a∈[$2\sqrt{2}$,$2\sqrt{3}$]时,求椭圆离心率取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(3cos$\frac{x}{3}$,sin$\frac{x}{3}$),$\overrightarrow{b}$=(cos$\frac{x}{6}$,-3sin$\frac{x}{6}$),函数f(x)=$\frac{1}{2}$$\overrightarrow{a}$•$\overrightarrow{b}$+$\frac{3\sqrt{3}}{2}$sin$\frac{x}{2}$.
(1)化简函数f(x)的解析式;
(2)在给定的坐标系内,画出函数f(x)在[0,4π]内的图象.

查看答案和解析>>

同步练习册答案