精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow{a}$=(3cos$\frac{x}{3}$,sin$\frac{x}{3}$),$\overrightarrow{b}$=(cos$\frac{x}{6}$,-3sin$\frac{x}{6}$),函数f(x)=$\frac{1}{2}$$\overrightarrow{a}$•$\overrightarrow{b}$+$\frac{3\sqrt{3}}{2}$sin$\frac{x}{2}$.
(1)化简函数f(x)的解析式;
(2)在给定的坐标系内,画出函数f(x)在[0,4π]内的图象.

分析 (1)由平面向量数量积的运算,三角函数中的恒等变换应用即可化简函数解析式;
(2)根据函数解析式及五点法即可作出函数y=Asin(ωx+φ)的图象.

解答 解:(1)∵f(x)=$\frac{1}{2}$$\overrightarrow{a}$•$\overrightarrow{b}$+$\frac{3\sqrt{3}}{2}$sin$\frac{x}{2}$
=$\frac{1}{2}×3cos\frac{x}{3}cos\frac{x}{6}$-$\frac{1}{2}×3×sin\frac{x}{3}×sin\frac{x}{6}$+$\frac{3\sqrt{3}}{2}$sin$\frac{x}{2}$
=$\frac{3}{2}$cos($\frac{x}{3}$+$\frac{x}{6}$)+$\frac{3\sqrt{3}}{2}$sin$\frac{x}{2}$
=3sin($\frac{x}{2}$+$\frac{π}{6}$)
(2)在给定的坐标系内,画出函数f(x)在[0,4π]内的图象如下:

点评 本题主要考查了平面向量数量积的运算,三角函数中的恒等变换应用,五点法作函数y=Asin(ωx+φ)的图象,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=a-$\frac{1}{x}$-lnx(a∈R),若f(x)有两零点x1,x2(x1<x2),求x1+x2<3ea-1-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.记数列{an}的前n项和为Sn,且Sn=$\int_0^n$(2ax+b)dx(a,b常数).若不等式an2+$\frac{{S_{n}^2}}{{n{^2}}}$≥ma12对任意的数列{an}及任意正整数n都成立,则实数m的取值范围为(  )
A.$(-∞,\frac{1}{2}]$B.$[{\frac{1}{5},\frac{1}{2}}]$C.$[{\frac{1}{5},+∞})$D.$(-∞,\frac{1}{5}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若E,F,G,H分别在四面体的棱AB,BC,CD,AD上,且AC∥平面EFGH,则(  )
A.EF∥GHB.EH∥FGC.EH∥平面BCDD.FG∥平面ABD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设n∈N*,f(n)=1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$,试比较f(n)与$\sqrt{n+1}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a>b,ab≠0,则下列不等式中:①a2>b2;②$\frac{1}{a}<\frac{1}{b}$;③a3>b3;④a2+b2>2ab,恒成立的不等式的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若关于x的方程$\sqrt{3}$sinx+|cosx|+a=0在区间[0,2π]内有四个不同的解分别为x1,x2,x3,x4,则x1+x2+x3+x4的值为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.观察下列各式:
sin245°+cos275°+sin45°cos75°=$\frac{3}{4}$,
sin240°+cos270°+sin40°cos70°=$\frac{3}{4}$,
sin210°+cos240°+sin10°cos40°=$\frac{3}{4}$
(1)分析上述各式的共同特点,写出能反映一般规律的等式;
(2)并对(1)的等式的正确性作出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1)、(1,1,0)、(0,1,0)、(1,1,1),则该四面体的外接球的体积为(  )
A.$\frac{\sqrt{3}}{2}$πB.πC.$\sqrt{3}$πD.

查看答案和解析>>

同步练习册答案