精英家教网 > 高中数学 > 题目详情
已知圆C:(x-3)2+(y-4)2=1,点A(0,-1),B(0,1),设P点是圆C上的动点,d=|PA|2+|PB|2,求d的最大、最小值及对应的P点的坐标.
考点:直线与圆相交的性质
专题:直线与圆
分析:利用圆的参数方程,结合两点间的距离公式即可得到结论.
解答: 解:设P点的坐标为(3+sinα,4+cosα),
则d=|PA|2+|PB|2=(4+sinα)2+(4+cosα)2+(2+sinα)2+(4+cosα)2=54+12sinα+16cosα=54+20sin(θ+α)
∴当sin(θ+α)=1时,即12sinα+16cosα=20时,d取最大值74,
此时sinα=
3
5
,cosα=
4
5

P点坐标(
18
5
24
5

当sin(θ+α)=-1时,即12sinα+16cosα=-20,d取最小值34,
此时sinx=-
3
5
,cosα=-
4
5
,P点坐标(
12
5
16
5
).
点评:本题主要考查两点间距离公式的应用,利用圆的参数方程是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在空间四面体OABC中,OB=OC,AB=AC,求证:OA⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足:f(0)=3;f(x+1)-f(x)=2x.
(1)求函数f(x)的解析式;
(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围;
(3)令g(x)=f(|x|)+m(m∈R),试讨论函数g(x)零点个数的情况,请写出每种情况下对应的m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某个体服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这种服装件数x之间的一组数据关系如表所示:
x3456789
y66697381899091
参考数据:
7
i=1
xi2=280,
7
i=1
yi2=45309,
7
i=1
xiyi=3487.
(1)求纯利y与每天销售件数x之间的回归直线方程(结果精确到0.01);
(2)若该周内某天销售服装20件,估计可获纯利多少元.

查看答案和解析>>

科目:高中数学 来源: 题型:

若tan∠A=
2
3
3
,则∠A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数y=x2-2x+1的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
3
)
.求函数f(x)的对称轴,并求函数f(x)在区间[0,
π
2
]
内的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ab=ba,a>0,b>0,求证:(
a
b
 
a
b
=a 
a-b
b

查看答案和解析>>

科目:高中数学 来源: 题型:

Z=
(x-y)2+(
2
x
+
y
2
)2
(x≠0)的最小值为
 

查看答案和解析>>

同步练习册答案