精英家教网 > 高中数学 > 题目详情

(2014·黄冈模拟)如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为(  )

A.[2,+∞) B.(,+∞)

C. D.(+1,+∞)

 

B

【解析】由已知易求得e1=,e2=,e1·e2=1,但e1+e2≥2中,不能取“=”,所以e1+e2=+=+,令t=-1,则e1+e2=,t∈(0,-1),所以e1+e2∈(,+∞),故选B.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学人教版评估检测 第四章平面向量、数系扩充与复数引入(解析版) 题型:填空题

(2013·重庆高考)在OA为边,OB为对角线的矩形中,=(-3,1),=(-2,k),则实数k=________.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学人教版评估检测 第六章 不等式、推理与证明(解析版) 题型:填空题

(2014·黄冈模拟)已知a,b都是正实数,函数y=2aex+b的图象过(0,1)点,则+的最小值是________.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学人教版评估检测 第八章 平面解析几何(解析版) 题型:解答题

(2014·武汉模拟)已知点P是圆M:x2+(y+m)2=8(m>0,m≠)上一动点,点N(0,m)是圆M所在平面内一定点,线段NP的垂直平分线l与直线MP相交于点Q.

(1)当P在圆M上运动时,记动点Q的轨迹为曲线Г,判断曲线Г为何种曲线,并求出它的标准方程.

(2)过原点斜率为k的直线交曲线Г于A,B两点,其中A在第一象限,且它在x轴上的射影为点C,直线BC交曲线Г于另一点D,记直线AD的斜率为k′,是否存在m,使得对任意的k>0,都有|k·k′|=1?若存在,求m的值;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学人教版评估检测 第八章 平面解析几何(解析版) 题型:填空题

已知两条直线y=ax-2和y=(a+2)x+1互相垂直,则a等于________.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学人教版评估检测 第八章 平面解析几何(解析版) 题型:选择题

抛物线的顶点在坐标原点,焦点与双曲线-=1的一个焦点重合,则该抛物线的标准方程可能是(  )

A.x2=4y     B.x2=-4y

C.y2=-12x   D.x2=-12y

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学人教版评估检测 第五章 数列(解析版) 题型:解答题

已知数列{an}满足an+1=(n∈N*),且a1=.

(1)求证:数列是等差数列,并求an.

(2)令bn=(n∈N*),求数列{bn}的前n项和Tn.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学人教版评估检测 第五章 数列(解析版) 题型:选择题

数列{an}中,a1=1,对所有的n≥2,都有a1·a2·a3·…·an=n2,则a3+a5等于(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学人教版评估检测 第三章 三角函数、解三角形(解析版) 题型:解答题

(2014·孝感模拟)已知函数f(x)=sinωxcosωx-cos2ωx,其中ω为使f(x)能在x=时取得最大值的最小正整数.

(1)求ω的值.

(2)设△ABC的三边长a,b,c满足b2=ac,且边b所对的角θ的取值集合为M,当x∈M时,求f(x)的值域.

 

查看答案和解析>>

同步练习册答案