精英家教网 > 高中数学 > 题目详情
10.已知等差数列{an}的前n项和为Sn,且3a3=a6+4,若S5<10,则a2的取值范围是(  )
A.(-∞,2)B.(-∞,0)C.(1,+∞)D.(0,2)

分析 设公差为d,由3a3=a6+4,求出d=2a2-4,再由S5<10,能求出a2的取值范围.

解答 解:设公差为d,由3a3=a6+4,
得3a2+3d=a2+4d+4,即d=2a2-4,
则由S5<10,
得$\frac{5({a}_{1}+{a}_{5})}{2}$=$\frac{5({a}_{2}+{a}_{4})}{2}$<10,
∴a2+a4<4,
∴a2+a2+2d<4,
∴2a2+2(2a2-4)<4,
∴6a2<12,
解得a2<2.
故选:A.

点评 本题考查等差数列第二项的范围的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在圆x2+y2=9上任取一点P,过点P作y轴的垂线段PD,D为垂足,当P为圆与y轴交点时,P与D重合,动点M满足$\overrightarrow{DM}$=2$\overrightarrow{MP}$;
(1)求点M的轨迹C的方程;
(2)抛物线C′的顶点在坐标原点,并以曲线C在y轴正半轴上的顶点为焦点,直线y=x+3与抛物线C′交于A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知焦点在y轴上的椭圆E的中心是原点O,离心率为双曲线y2-$\frac{{x}^{2}}{2}$=1离心率的一半,直线y=x被椭圆E截得的线段长为$\frac{4\sqrt{10}}{5}$.直线l:y=kx+m与y轴交于点P,与椭圆E交于A,B两个相异点,且$\overrightarrow{AP}$=λ$\overrightarrow{PB}$.
(1)求椭圆E的方程;
(2)是否存在实数m,使$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.甲、乙两艘轮船都要停靠同一个泊位,它们可能在一昼夜的任意时刻到达.设甲、乙两艘轮船停靠泊位的时间分别是4小时和6小时,求有一艘轮船停靠泊位时必须等待一段时间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.△ABC中,角A、B、C的对边分别为a、b、c,若A=2B,则$\frac{c}{b}+\frac{2b}{a}$的取值范围为(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(6,y),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则y等于(  )
A.-9B.-4C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.袋中装有大小相同的3个白球和4个黑球,现从袋中任取3个球,设ξ为所取出的3个球中白球数与黑球数之差的绝对值.
(1)求ξ的分布列及数学期望;
(2)记“函数f(x)=x2-3ξx+1在区间[2,+∞)上单调递增”为事件A,求事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若实数x,y满足不等式组$\left\{{\begin{array}{l}{y≤3}\\{3x+7y-24≤0}\\{x+4y-8≥0}\end{array}}\right.$,则z=|x|+|y|的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)是定义在(-1,1)上的偶函数,在(0,1)上是增函数,若f(a-2)-f(4-a2)<0,求实数a的取值范围.

查看答案和解析>>

同步练习册答案