精英家教网 > 高中数学 > 题目详情
5.△ABC中,角A、B、C的对边分别为a、b、c,若A=2B,则$\frac{c}{b}+\frac{2b}{a}$的取值范围为(2,4).

分析 先根据正弦定理化简整理可得$\frac{c}{b}+\frac{2b}{a}$=4cos2B+$\frac{1}{cosB}$-1,设$cosB=t∈({\frac{1}{2},1})$,构造函数,利用导数判断出函数的单调性,求出其值域即可.

解答 解:.$\frac{c}{b}+\frac{2b}{a}=\frac{sinC}{sinB}+\frac{2sinB}{sinA}=\frac{sin3B}{sinB}+\frac{2sinB}{sin2B}=\frac{sinBcos2B+cosBsin2B}{sinB}+\frac{1}{cosB}$
=cos2B+2cos2B+$\frac{1}{cosB}=4{cos^2}B+\frac{1}{cosB}$-1.
又2B∈(0,π),且A+B=3B∈(0,π),
所以$B∈({0,\frac{π}{3}})$.
设$cosB=t∈({\frac{1}{2},1})$,
令$\frac{c}{b}+\frac{2b}{a}=4{t^2}+\frac{1}{t}$-1=f(t),
则f'(t)=8t-$\frac{1}{t^2}=\frac{{8{t^3}-1}}{t^2}$>0,
故f(t)在$({\frac{1}{2},1})$上单调递增,
所以2<f(t)<4.
所以$\frac{c}{b}+\frac{2b}{a}$的取值范围为(2,4),
故答案为:(2,4)

点评 本题考查三角函数的化简和求值,主要考查二倍角公式和正弦定理的运用,同时考查函数的单调性的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在平行六面体ABCD-A′B′C′D′中,AB=5,AD=3,AA′=7,∠BAD=∠BAA′=∠DAA′=60°,则BD的长为$\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(1,x-1),若($\overrightarrow{a}$-2$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某射击运动员进行打靶训练,若气枪中有5发子弹,运动员每次击中目标概率均为$\frac{2}{3}$,击中即停止打靶,则运动员所需子弹数的期望为(  )
A.$\frac{676}{243}$B.$\frac{10}{3}$C.$\frac{121}{81}$D.$\frac{358}{243}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x∈N|x2+3x-10≤0},则集合A中元素的个数为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的前n项和为Sn,且3a3=a6+4,若S5<10,则a2的取值范围是(  )
A.(-∞,2)B.(-∞,0)C.(1,+∞)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知抛物线x2=4y的焦点是F,直线$x-\sqrt{3}y+\sqrt{3}=0$交抛物线于A,B两点,且|AF|>|BF|,则$\frac{{|{AF}|}}{{|{BF}|}}$=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.A,B,C,D是同一球面上的四个点,△ABC中,$∠BAC=\frac{2π}{3}$,AB=AC,AD⊥平面ABC,AD=6,$AB=2\sqrt{3}$,则该球的表面积为84π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知四边形ABCD为正方形,四边形ABEF,四边形DCEF为菱形,且∠AFE=$\frac{π}{3}$,M为BC的中点.
(Ⅰ)证明:BC⊥平面MEF;
(Ⅱ)求直线DE与平面MEF所成角的大小.

查看答案和解析>>

同步练习册答案