精英家教网 > 高中数学 > 题目详情
4.arcsin(-$\frac{1}{2}$)+arccos(-$\frac{\sqrt{3}}{2}$)+arctan(-$\sqrt{3}$)=$\frac{π}{3}$.

分析 利用反三角函数的定义和性质,求得要求式子的值.

解答 解:arcsin(-$\frac{1}{2}$)+arccos(-$\frac{\sqrt{3}}{2}$)+arctan(-$\sqrt{3}$)=-arcsin($\frac{1}{2}$)+π-arccos$\frac{\sqrt{3}}{2}$-arctan$\sqrt{3}$
=-$\frac{π}{6}$+(π-$\frac{π}{6}$)-$\frac{π}{3}$=$\frac{π}{3}$,
故答案为:$\frac{π}{3}$.

点评 本题主要考查反三角函数的定义和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,则z=2x+y的最大值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2-2x+3,求下列情况下二次函数的最值
(1)2≤x≤3;
(2)x∈[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.使不等式x2>x${\;}^{\frac{1}{2}}$成立的x的取值范围是(  )
A.x>1B.0<x<1C.x>0D.x<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下面是关于复数z=$\frac{i}{-1+i}$的四个命题,其中的真命题为(  )
p1:|z|=$\frac{i}{-1+i}$,p2:z2=2i,p3:z的共轭复数为$\frac{1+i}{2}$,p4:z的虚数为-1.
A.p1,p3B.p2,p3C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}满足:a1=3,an+1=9•$\root{3}{{a}_{n}}$(n≥1),则$\underset{lim}{n→∞}$an=27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a,b为直线,α,β,γ为平面,有下列命题中正确的是(  )
A.a∥α,b∥β,则a∥bB.a⊥γ,b⊥γ,则a∥bC.a∥b,b?α,则a∥αD.a⊥b,a⊥α,则b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sin(2x-$\frac{π}{6}$)+sin(2x+$\frac{π}{6}$)+2cos2x+a-1(a∈R,a是常数).
(1)求函数的最小正周期;
(2)求函数的单调递减区间;
(3)若x∈[0,$\frac{π}{2}$]时,f(x)的最小值为-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如果p1•p2=4(q1+q2),证明关于x的二次方程x2+p1x+q1=0,x2+p2x+q2=0中至少有一个方程有实根.

查看答案和解析>>

同步练习册答案