13£®ÏÂÁм¸¸öÃüÌ⣺
¢Ùº¯Êýy=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$ÊÇżº¯Êý£¬µ«²»ÊÇÆæº¯Êý£»
¢Ú¡°$\left\{\begin{array}{l}a£¾0\\¡÷={b^2}-4ac¡Ü0\end{array}$¡±ÊÇ¡°Ò»Ôª¶þ´Î²»µÈʽax2+bx+c¡Ý0µÄ½â¼¯ÎªR¡±µÄ³äÒªÌõ¼þ£»
¢ÛÈôº¯Êýy=Acos£¨¦Øx+ϕ£©£¨A¡Ù0£©ÎªÆæº¯Êý£¬Ôòϕ=$\frac{¦Ð}{2}$+k¦Ð£¨k¡ÊZ£©£»
¢ÜÒÑÖªx¡Ê£¨0£¬¦Ð£©£¬Ôòy=sinx+$\frac{2}{sinx}$µÄ×îСֵΪ2$\sqrt{2}$£®
ÆäÖÐÕýÈ·µÄÓТڢۣ®

·ÖÎö ¢Ù£¬º¯Êýy=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$=0ÊÇżº¯Êý£¬ÓÖÊÇÆæº¯Êý£»
¢Ú£¬Óɶþ´Îº¯ÊýµÄͼÏó¿ÉÖª£»
¢Û£¬µ±ϕ=$\frac{¦Ð}{2}$+k¦Ð£¨k¡ÊZ£©Ê±£¬º¯Êýy=Acos£¨¦Øx+ϕ£©=¡ÀAsin¦Øx £¨A¡Ù0£©ÎªÆæº¯Êý£»
¢Ü£¬x¡Ê£¨0£¬¦Ð£©£¬ÒòΪsinx¡Ê£¨0£¬1]£¬¡ày=sinx+$\frac{2}{sinx}$²»Âú×ã¾ùÖµ²»µÈʽµÄÊÊÓÃÌõ¼þ£¨sinx=$\sqrt{2}$£©£®

½â´ð ½â£º¶ÔÓÚ¢Ù£¬º¯Êýy=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$=0ÊÇżº¯Êý£¬ÓÖÊÇÆæº¯Êý£¬¹Ê´í£»
¶ÔÓÚ¢Ú£¬Óɶþ´Îº¯ÊýµÄͼÏó¿ÉÖª£¬¡°$\left\{\begin{array}{l}a£¾0\\¡÷={b^2}-4ac¡Ü0\end{array}$¡±ÊÇ¡°Ò»Ôª¶þ´Î²»µÈʽax2+bx+c¡Ý0µÄ½â¼¯ÎªR¡±µÄ³äÒªÌõ¼þ£¬¹ÊÕýÈ·£»
¶ÔÓÚ¢Û£¬Èôϕ=$\frac{¦Ð}{2}$+k¦Ð£¨k¡ÊZ£©£»Ôòº¯Êýy=Acos£¨¦Øx+ϕ£©=¡ÀAsin¦Øx £¨A¡Ù0£©ÎªÆæº¯Êý£¬¹ÊÕýÈ·£»
¶ÔÓڢܣ¬ÒÑÖªx¡Ê£¨0£¬¦Ð£©£¬ÒòΪsinx¡Ê£¨0£¬1]£¬¡ày=sinx+$\frac{2}{sinx}$²»Âú×ã¾ùÖµ²»µÈʽµÄÊÊÓÃÌõ¼þ£¨x=$\sqrt{2}$£©£¬¹Ê´í£®
¹Ê´ð°¸Îª£º¢Ú¢Û£®

µãÆÀ ±¾Ì⿼²éÁËÃüÌâÕæ¼ÙµÄÅжϣ¬Éæ¼°µ½´óÁ¿µÄº¯Êý֪ʶ£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=$\left\{{\begin{array}{l}{f£¨x+1£©£¬}&{x¡Ü2}\\{{3^x}£¬}&{x£¾2}\end{array}}$£¬Ôòf£¨0£©µÄֵΪ27£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Ô²C1£ºx2+y2+2x+2y-2=0ÓëÔ²C2£ºx2+y2-6x+2y+6=0µÄλÖùØÏµÊÇÍâÇУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-y+1¡Ý0}\\{x-2y+2¡Ü0}\\{y¡Ü2}\end{array}\right.$£¬Ôòz=2x-3yµÄ×îСֵΪ-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Éèf£¨x£©=$\frac{1-x}{1+x}$£¬¼Çf1£¨x£©=f£¨x£©£¬Èôfk+1£¨x£©=f£¨fk£¨x£©£©£¬k¡ÊN*£¬Ôòf2016£¨x£©=$\frac{1-x}{1+x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª$\overrightarrow a£¬\overrightarrow b$ÊǼнÇΪ60¡ãµÄÁ½¸öµ¥Î»ÏòÁ¿£¬Ôòµ±ÊµÊýt¡Ê[-1£¬1]£¬$|\overrightarrow a+t\overrightarrow b|$µÄ×î´óֵΪ$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Ó÷ûºÅ±íʾ¡°µãAÔÚÆ½Ãæ¦ÁÄÚ£¬Ö±ÏßlÔÚÆ½Ãæ¦ÁÄÚ¡±ÎªA¡Ê¦Á£¬l?¦Á£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¹ýÅ×ÎïÏßy=ax2£¨a£¾0£©µÄ½¹µãF×÷Ò»Ö±Ïß½»Å×ÎïÏßÓÚA¡¢BÁ½µã£¬ÈôÏß¶ÎAFÓëBFµÄ³¤·Ö±ðΪm£¬n£¬Ôò$\frac{1}{m}+\frac{1}{n}$µÄֵΪ£¨¡¡¡¡£©
A£®2aB£®4aC£®$\frac{1}{2a}$D£®$\frac{1}{4a}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Å×ÎïÏßC£ºx2=2py£¨p£¾0£©µÄͨ¾¶Îª4£¬ÕýÈý½ÇÐÎÒ»¸ö¶¥µãÊÇÔ­µãO£¬ÁíÍâÁ½µãA£¬BÒ²ÔÚÅ×ÎïÏßCÉÏ£®
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©ÇóÕýÈý½ÇÐÎOAB±ß³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸