精英家教网 > 高中数学 > 题目详情
3.抛物线C:x2=2py(p>0)的通径为4,正三角形一个顶点是原点O,另外两点A,B也在抛物线C上.
(1)求抛物线C的方程;
(2)求正三角形OAB边长.

分析 (1)抛物线的通径为2p=4,可得p=2,进而得到抛物线方程;
(2)求出A的坐标,即可得到OA的长.

解答 解:(1)∵抛物线的通径为2p=4,∴p=2,
∴抛物线C的方程为x2=4y    (5分)
(2)∵△AOB为正三角形.由抛物线的几何性质知:OA,OB关于y轴对称
∴设直线OA的方程为y=$\sqrt{3}x$,由 $\left\{\begin{array}{l}{{x}^{2}=4y}\\{y=\sqrt{3}x}\end{array}\right.$得 x2=4$\sqrt{3}x$,(8分)
∴xA=4$\sqrt{3}$myA=12,(10分)
∴|OA|=8$\sqrt{3}$      (14分)

点评 本题考查抛物线的定义、方程和性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.下列几个命题:
①函数y=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函数,但不是奇函数;
②“$\left\{\begin{array}{l}a>0\\△={b^2}-4ac≤0\end{array}$”是“一元二次不等式ax2+bx+c≥0的解集为R”的充要条件;
③若函数y=Acos(ωx+ϕ)(A≠0)为奇函数,则ϕ=$\frac{π}{2}$+kπ(k∈Z);
④已知x∈(0,π),则y=sinx+$\frac{2}{sinx}$的最小值为2$\sqrt{2}$.
其中正确的有②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将函数y=sin(x-$\frac{5π}{6}$)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移$\frac{π}{3}$个单位,则所得函数图象对应的解析式是(  )
A.$y=sin(\frac{x}{2}-\frac{π}{4})$B.$y=sin(2x-\frac{π}{6})$C.$y=sin({2x-\frac{3π}{2}})$D.$y=sin(\frac{x}{2}-\frac{2π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,2,3},B={2,3,6}定义运算A?B=(x|x=ab,a∈A,b∈B)则A?B中所含元素的个数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,椭圆C和抛物线y2=x交于M,N两点,且直线MN恰好通过椭圆C的右焦点.
(1)求椭圆C的标准方程;
(2)经过椭圆C右焦点的直线l和椭圆C交于A,B两点,点P在椭圆上,且$\overrightarrow{OA}$=2$\overrightarrow{BP}$,其中O为坐标原点,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}中,a1=-$\frac{1}{4}$,an=1-$\frac{1}{{a}_{n-1}}$(n>1),则a2016的值为(  )
A.-$\frac{1}{4}$B.5C.$\frac{4}{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若复数$\frac{1-bi}{2+i}$(b∈R)的实部与虚部相等,则b的值为(  )
A.-6B.-3C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设a为实数,函数f(x)=(x-a)2+|x-a|-a(a-1).
(1)若f(0)≤1,求a的取值范围;
(2)求f(x)在R上的单调区间(无需使用定义严格证明,但必须有一定的推理过程);
(3)当a>2时,求函数g(x)=f(x)+|x|在R上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知[x]表示不超过实数x的最大整数(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定义{x}=x-[x],给出如下命题:
①使[x+1]=3成立的x的取值范围是2≤x<3;
②函数y={x}的定义域为R,值域为[0,1];
③设函数f(x)=$\left\{\begin{array}{l}\left\{x\right\}\begin{array}{l}{\;},{x≥0}\end{array}\\ f(x+1)\begin{array}{l}{\;},{x<0}\end{array}\end{array}$,则函数y=f(x)-$\frac{1}{4}$x-$\frac{1}{4}$的不同零点有3个.
④{$\frac{2013}{2014}}$}+{${\frac{{{{2013}^2}}}{2014}}$}+{${\frac{{{{2013}^3}}}{2014}}$}+…+{${\frac{{{{2013}^{2014}}}}{2014}$}=1007.
其中正确命题的序号是①③④.(填上所有正确命题的序号)

查看答案和解析>>

同步练习册答案