分析 (1)数列{an}满足an=3an-1+2(n≥2,n∈N+),变形为an+1=3(an-1+1),即可证明;
(2)由(1)可得:an=3n-1.由bn=log3(an+1),可得bn=$lo{g}_{3}({3}^{n}+1-1)$=n.anbn=n•(3n-1)=n•3n-n.利用“错位相减法”、等差数列与等比数列的前n项和公式即可得出.
解答 (1)证明:∵数列{an}满足an=3an-1+2(n≥2,n∈N+),
∴an+1=3(an-1+1),
∴数列{an+1}为等比数列,首项为3,公比为3;
(2)解:由(1)可得:an=3n-1.
∵bn=log3(an+1),∴bn=$lo{g}_{3}({3}^{n}+1-1)$=n.
∴anbn=n•(3n-1)=n•3n-n.
令Tn=3+2×32+3×33+…+n•3n,
∴3Tn=32+2×33+…+(n-1)•3n+n•3n+1,
∴-2Tn=3+32+…+3n-n•3n+1=$\frac{3({3}^{n}-1)}{3-1}$-n•3n+1=$\frac{1-2n}{2}$•3n+1-$\frac{3}{2}$,
∴Tn=$\frac{2n-1}{4}•{3}^{n+1}$+$\frac{3}{4}$.
∴数列{anbn}的前n项和Sn=$\frac{2n-1}{4}•{3}^{n+1}$+$\frac{3}{4}$-$\frac{n(n+1)}{2}$.
点评 本题考查了递推式的应用、等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了变形能力、推理能力与计算能力,属于中档题
科目:高中数学 来源: 题型:选择题
| A. | x2=8y | B. | x2=2y | C. | x2=4y | D. | x2=2$\sqrt{2}$y |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1<m≤2 | B. | 1<m<2 | C. | m>2 | D. | m≥2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | $\frac{4\sqrt{3}}{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,+∞) | B. | (-∞,1) | C. | [1,+∞) | D. | (1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 重心 | B. | 外心 | C. | 内心 | D. | 垂心 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com