| A. | 重心 | B. | 外心 | C. | 内心 | D. | 垂心 |
分析 一条侧棱就垂直于另外两条侧棱所组成的面,即垂直于在面上的底面的一条边,过顶点向底面做垂线,连接底面的顶点和垂足,根据三垂线定理得到连线是高线,得到三条高线的交点是垂心.
解答
解:用平面在正方体上截下一个三棱锥,以原来正方形的那个顶点作为三棱锥的顶点,
则三棱锥的三条侧棱中,每两条之间的夹角都是90°,
则三条侧棱两两垂直,
即SB⊥SA,SB⊥SC,
∵SA∩SC=S,
∴SB⊥面SAC,
∵AC?面SAC,
∴SB⊥AC,
过S向底面做垂线,垂足为O,连接BO,并延长交AC于D,
由三垂线定理知BD⊥AC,即BD 是三角形的高线,
∴三棱锥的顶点在底面的射影是底面三角形的垂心,
故选:D
点评 本题考查棱锥的结构特征,考查逻辑思维能力和空间思维能力,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | -$\sqrt{2}$ | 2 | $\sqrt{6}$ | 9 |
| y | $\sqrt{3}$ | -$\sqrt{2}$ | -1 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-2cos$\frac{πt}{6}$+2.5 | B. | y=-2sin$\frac{πt}{6}$+2.5 | C. | y=-2cos$\frac{πt}{3}$+2.5 | D. | y=-2sin$\frac{πt}{3}$+2.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{15}$ | B. | $\frac{1}{90}$ | C. | $\frac{1}{180}$ | D. | $\frac{1}{360}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | On随着n的增大而增大 | B. | On随着n的增大而减小 | ||
| C. | 随着n的增大,On先增大后减小 | D. | 随着n的增大,On先减小后增大 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}x=sint\\ y={cos^2}t\end{array}\right.$ | B. | $\left\{\begin{array}{l}x=tanφ\\ y=1-{tan^2}φ\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}x=\sqrt{1-t}\\ y=t\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=cosθ}\\{y=si{n}^{2}θ}\end{array}\right.$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com