精英家教网 > 高中数学 > 题目详情
13.如图,某大风车的半径为2m,每6s旋转一周,它的最低点O离地面0.5 m.风车圆周上一点A从最低点O开始,运动t(s)后与地面的距离为h(m),则函数h=f(t)的关系式(  )
A.y=-2cos$\frac{πt}{6}$+2.5B.y=-2sin$\frac{πt}{6}$+2.5C.y=-2cos$\frac{πt}{3}$+2.5D.y=-2sin$\frac{πt}{3}$+2.5

分析 根据实际问题建立三角函数模型,求出函数的周期和最值分别进行判断即可.

解答 解:设h=f(t)=Asinωt+k或Acosωt+k,
∵大风车每6s旋转一周,
∴周期T=6,即T=$\frac{2π}{ω}=6$,解得ω=$\frac{2π}{6}$=$\frac{π}{3}$,排除A,B.
则f(t)=Asin$\frac{π}{3}$t+k或Acos$\frac{π}{3}$t+k,
∵大风车的半径为2m,它的最低点O离地面0.5 m,
∴函数的最小值为0.5,最大值为4.5,
则A+k=4.5,-A+k=0.5,
解得A=2,k=2.5,
当t=0时,f(0)=0.5为最小值,
若y=-2cos$\frac{πt}{3}$+2.5,则当t=0时,y=-2cos0+2.5=2.5-2=0.5满足条件.
若y=-2sin$\frac{πt}{3}$+2.5,则当t=0时,y=-2sin0+2.5=2.5-0=2.5不满足条件.排除D,
故选:C

点评 本题主要考查三角函数解析式的确定,根据条件分别求出三角形的周期和最值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求下列各题中的函数f(x)的解析式.
(1)已知f($\sqrt{x}+2$)=x+4$\sqrt{x}$,求f(x)
(2)已知函数t=f(x)满足2f(x)+f($\frac{1}{x}$)=2x,x∈R且x≠0,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在二项式${({\root{3}{x}-\frac{1}{2x}})^{\;n}}$的展开式中,恰好第五项的二项式系数最大.
(1)求展开式中各项的系数和;
(2)求展开式中的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对于命题:p:?x∈(0,$\frac{π}{2}$),sinx+cosx>1;q:?x∈R,sin2x+cos2x>1,则下列判断正确的是(  )
A.p假q真B.p真q假C.p假q假D.p真q真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=loga($\sqrt{{x}^{2}+1}$+x)+$\frac{1}{{a}^{x}-1}$+$\frac{3}{2}$(a>0,a≠1),若f(sin($\frac{π}{6}$-α))=$\frac{1}{3}$(α≠kπ+$\frac{π}{6}$,k∈Z),则f(cos(α-$\frac{2π}{3}$))=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知各项均为正数的两个数列{an}和{bn}满足:an+1=$\frac{{a}_{n}+{b}_{n}}{\sqrt{{{a}_{n}}^{2}+{{b}_{n}}^{2}}}$,bn+1=1+$\frac{{b}_{n}}{{a}_{n}}$,n∈N*
(1)求证:数列{($\frac{{b}_{n}}{{a}_{n}}$)2}是等差数列;
(2)若a1=b1=1,令($\frac{{b}_{n}}{{a}_{n}}$)2=$\frac{1}{{c}_{n}}$,求证:$\frac{1}{{{c}_{1}}^{2}}$+$\frac{1}{{{c}_{2}}^{2}}$+$\frac{1}{{{c}_{3}}^{2}}$+…+$\frac{1}{{{c}_{n}}^{2}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.用平面在正方体上截下一个三棱锥,以原来正方体的那个顶点作为三棱锥的顶点,则该顶点在三棱锥的底面上的射影是这个三角形的(  )
A.重心B.外心C.内心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-1|+|x-a|.
(1)若a=2,解不等式f(x)≤2;
(2)若对任意的x∈R,恒有f(x)≥2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知等比数列{an}的前n项和为Sn,若公比q=$\frac{1}{2}$,则$\frac{{S}_{6}}{{S}_{3}}$等于$\frac{9}{8}$.

查看答案和解析>>

同步练习册答案