精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-ax+1(a∈R是常数).
(Ⅰ)求函数y=f(x)的图象在为p(1,f(1))处的切线L方程;
(Ⅱ)证明函数y=f(x)(x≠1)的图象在切线L下方.
考点:导数在最大值、最小值问题中的应用,利用导数研究曲线上某点切线方程
专题:综合题,导数的综合应用
分析:(Ⅰ)求函数的导数,利用导数的几何意义求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;
(Ⅱ)构造函数F(x)=f(x)-(1-a)x,利用导数求函数的最值,利用最值证明:函数y=f(x)(x≠1)的图象在直线l的下方
解答: (Ⅰ)解:∵f(x)=lnx-ax+1,
f′(x)=
1
x
-a
,f(1)=-a+1,
∴f'(1)=1-a,∴切线L方程为y-(1-a)=(1-a)(x-1)
即y=(1-a)x;
(Ⅱ)证明:令F(x)=lnx-ax+1-x+ax=lnx-x+1,则F′(x)=
1
x
-1=
1-x
x
(x>0)

令F'(x)>0,可得0<x<1;F'(x)<0,可得x>1,
∴F(x)在(1,+∞)上单调递减,在(0,1)上单调递增,
∴F(x)max=F(1)=0,
又x≠1,∴F(x)<0,
∴f(x)<(1-a)x,
∴函数y=f(x)(x≠1)的图象在切线L下方.
点评:本题主要考查利用导数研究函数的性质,考查学生的运算能力,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集为R,集合A={x|2x≥1},B={x|x2-6x+8≤0},则A∩∁RB=(  )
A、{x|x≤0}
B、R
C、{x|0≤x<2,或x>4}
D、{x|0<x≤2,或x≥4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=2,|
b
|=1,
a
b
=-1,则|2
a
+
b
|等于(  )
A、
13
B、
10
C、
11
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在R上的奇函数f(x),满足f(x+3)=f(x),则f(1)+f(2)+f(3)=(  )
A、0B、-1C、3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

某人参加一档综艺节目,需依次回答6道题闯关,每关答一题,若回答正确,则他可进入下一关;若回答错误,则他离开此节目,按规定,他有一次求助亲友团的机会,若回答正确,也被视为答案正确,否则视为错误,6道题目随机排列,已知他能答出其中3题,亲友团能答对其余3题中的2题,设他能闯过的关数为随机变量X.
(Ⅰ)求他恰好闯过一关的概率;
(Ⅱ)求X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1+x)•e-2x,g(x)=ax-x2+1+x•cosx.
(1)若f(x)在x=-1处的切线与g(x)在x=0处的切线互相垂直,求a的值;
(2)求证(1+x)•e-x≥(1-x)•ex,x∈[0,1];
(3)求证:当a≤-2时,f(x)≥g(x)在区间[0,1]上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-alnx,g(x)=-
1+a
x
(a∈R)

(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(Ⅲ)若在[1,e](e=2.718…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某超市为了促销,举行消费抽奖活动,消费者可从一个装有1个红球,2个黄球,3个白球的口袋中按规定不放回摸球,摸中红球获奖15元,黄球获奖10元,白球获奖5元,奖金进行累加.抽奖规则如下:消费金额每满100元可摸1个球,最多可摸3个球.消费者甲购买了238元的商品,准备参加抽奖.
(Ⅰ)求甲摸出的球中恰有一个是红球的概率;
(Ⅱ)求甲获得20元奖金的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个容量为100的样本,已知某组的频率为0.3,则该组的频数为
 

查看答案和解析>>

同步练习册答案